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Generalized Regression Neural Networks in
Time-Varying Environment

Leszek Rutkowski, Senior Member, IEEE

Abstract—The current state of knowledge regarding non-
stationary processes is significantly poorer then in the case of
stationary signals. In many applications, signals are treated as sta-
tionary only because in this way it is easier to analyze them; in fact,
they are nonstationary. Nonstationary processes are undoubtedly
more difficult to analyze and their diversity makes application of
universal tools impossible. In this paper we propose a new class of
generalized regression neural networks working in nonstationary
environment. The generalized regession neural networks (GRNN)
studied in this paper are able to follow changes of the best model,
i.e., time-varying regression functions. The novelty is summarized
as follows: 1) We present adaptive GRNN tracking time-varying
regression functions. 2) We prove convergence of the GRNN based
on general learning theorems presented in Section IV. 3) We design
in detail special GRNN based on the Parzen and orthogonal series
kernels. In each case we precise conditions ensuring convergence
of the GRNN to the best models described by regression function.
4) We investigate speed of convergence of the GRNN and compare
performance of specific structures based on the Parzen kernel and
orthogonal series kernel. 5) We study various nonstationarities
(multiplicative, additive, “scale change,” “movable argument”)
and design in each case the GRNN based on the Parzen kernel and
orthogonal series kernel.

Index Terms—Convergence properties, generalized regression
neural networks (GRNN), orthogonal series kernel, Parzen kernel,
time-varying environment.

I. INTRODUCTION

THE generalized regression neural network (GRNN) was
introduced by Nadaraya [19] and Watson [41] and redis-

covered by Specht [35] to perform general (linear or nonlinear)
regressions. The GRNN was applied to solve a variety of prob-
lems [22] like prediction, control, plant process modeling or
general mapping problems. Other stochastically based neural
networks, the so-called probabilistic neural networks, are used
for classification [4], [18], [22], [27], [29], [33], [34], [36]. The
concept of the GRNN is based on nonparametric estimation
commonly used in statistics [10], [12], [16], [21], [23]–[26],
[38]. An interesting study presenting a bridge between non-
parametric estimation and artificial neural networks is given in
[43]. The essence of nonparametric estimation is nonlimiting to
an assumed—usually in an arbitrary way—parametric class of
models. Such approach was applied by several authors (see, e.g.,
[16], [23]–[26]) who created nonparametric algorithms based on
the Parzen method and orthogonal series. More precisely, in sta-
tionary regression analysis we consider a random vector ,
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where is —valued and is —valued. The problem is to
find a (measurable) function such that the risk

(1)

attains minimum. The solution is the regression function

(2)

Nonparametric procedures and GRNN approach the best solu-
tion (2) as the sample size grows large.

The nonparametric methods discussed above could be applied
only in stationary situations—where probability distributions do
not change with time. However, in many cases the assumption
concerning stationarity may be false, because usually proper-
ties of various processes depend on time. It is possible to enu-
merate the following examples: i) the production process in an
oil refinery, where nonstationarity is a result of a change of cat-
alyst properties; ii) the process of carbon dioxide conversion,
where nonstationarity is also a result of catalyst aging; iii) the
vibrations of the atmosphere around a starting space rocket are
a nonstationary process, because the force that stimulates the
rocket to start is a function of parameters that change quickly,
such as the speed of the rocket and the distance from Earth’s
surface; iv) the converter-oxygen process of steelmaking, when
thermal conditions in the converter may change between melts.
In literature, there are three best-known parametric methods for
modeling nonstationary systems (see, e.g., [17], [32]): a) Mov-
able models method; for modeling of nonstationary systems,
the classic method of minimum squares is used and the data
set is constantly updated through the elimination of the oldest
data and simultaneous feeding of the newest data. The period
of time during which the data set is collected is called the ob-
servation horizon. b) Method based on the criterion of the min-
imum weighted sum squares; the minimum squares method is
also used, but the elimination of the oldest data is carried out
through assigning decreasing weights in the criterion of the min-
imum weighed sum squares. c) Method of dynamic stochastic
approximation; characteristics of the nonstationary plant are ap-
proximated by a linear model having time-varying coefficients
which are estimated by means of the dynamic stochastic approx-
imation method [11].

An important problem in method a) is the optimization of the
observation horizon and in method b), the selection of weight
coefficients. Unfortunately, the solution of such problems de-
pends on the possession of a relative number of a priori infor-
mation, such as, e.g., the character of nonstationarity, the vari-
ance of disturbances and the form of the input signal. Similarly,
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a disadvantage of method c) is a necessity to know the way in
which the linear model coefficients change.

Methods a), b), and c) that were previously discussed do not
allow to track the changing characteristics of the best models de-
scribed by time-varying regression functions. Such a property is
possessed by the GRNN constructed in this paper. In the non-
stationary regression, we consider a sequence of random vari-
ables , having time-varying cumulative
probability density functions . The problem is to find a
measurable function such that the risk

(3)

attains minimum. The solution is the regression function

(4)

changing with time.
In this paper, we propose a new class of generalized regres-

sion neural networks working in a nonstationary environment.
The general regression neural networks studied in this paper are
able to follow changes of the best model i.e., time-varying re-
gression functions given by (4). The novelty is summarized as
follows:

1) We present the adaptive GRNN tracking time-varying re-
gression functions.

2) We prove convergence of the GRNN based on general
learning theorems presented in Section IV.

3) We design in detail special GRNN based on the Parzen
and the orthogonal series kernels. In each case, we precise
conditions ensuring convergence of the GRNN to the best
models given by (4).

4) We investigate speed of the convergence of the GRNN
and compare performance of specific structures based on
the Parzen kernel and the orthogonal series kernel.

5) We study various nonstationarities (multiplicative, addi-
tive, “scale change,” “movable argument”) and design in
each case the GRNN based on the Parzen kernel and or-
thogonal series kernel.

As aforementioned, the current state of knowledge regarding
nonstationary processes is significantly poorer than in the case
of stationary signals. In many applications signals are treated as
stationary because only in this way it is easier to analyze them;
in fact, they are nonstationary. Nonstationary processes are un-
doubtedly more difficult to analyze and their diversity makes ap-
plication of universal tools impossible. In this context our paper
seems to be a significant contribution to the development of new
techniques in the area of nonstationary signals. More specifi-
cally, the paper advances the current state of knowledge in the
following fields: a) stochastic—based neural networks; b) non-
parametric regression estimation; c) modeling of time-varying
plants. It should be emphasized that the methodology proposed
in this paper allows to solve problems that earlier could have
been treated as “ impossible to solve.” For illustration of the ca-
pability of our GRNN we may consider an application to mod-
eling of nonstationary plants described by

where is given by (4) and noise is a sequence of i.i.d.
random variables. Suppose that

i)

ii)

iii)

iv)

where , and are sequences of real num-
bers. In the paper, based on the learning sequence

we design the GRNN that allow
to track in cases i)–iv) despite the fact that we
do not known the function and sequences
or . It will be shown that it is possible to design the
GRNN tracking, e.g., the following nonstationarites in
the above models

This paper is organized into fourteen sections. In Section II
we introduce kernels functions on which the construction of
GRNN will be based. In Section III we review GRNN working
in stationary environment. In the same section we extend the
formula of the classical GRNN suggested by Specht [35] to
the recursive GRNN with a gain . In the next sections
we will replace the sequence in the recursive GRNN by
a more general sequence used in stochastic approximation
methods [1]. Due to such replacement, the recursive GRNN
will be able to follow changes of time-varying regression func-
tions (4). Since the existing theories do not allow to study re-
cursive GRNN in time-varying environment, in Section IV we
give the appropriate theorems which are very useful in the next
sections. In Section V we introduce the GRNN studied in this
paper and describe its relation with previous results concerning
stochastic—based neural networks in stationary case. In Sec-
tion VI we formulate a theorem for convergence of the GRNN
in probability and with probability one to regressions (4). The
GRNN based on the Parzen kernel and orthogonal series kernel
are studied in Sections VII and VIII, respectively. The speed of
convergence is investigated in Section IX. In Sections X–XII
we design the GRNN tracking various nonstationarities. Sec-
tion XIII presents simulation results. The proofs of all the theo-
rems are given in the Appendix.

II. KERNEL FUNCTIONS FOR THE GRNN CONSTRUCTION

All probabilistic neural networks studied in this paper
are based on a sequence , of bivariate
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Borel—measurable functions (so-called general kernel func-
tions) defined on . The concept
of general kernel functions stems from the theory of non-
parametric density estimation. We will use ideas of the two
methods: Parzen’s approach and orthogonal series.

A. Application of the Parzen Kernel

Sequence based on the Parzen kernel in the multidimen-
sional version takes the following form

(5)

where is a certain sequence of numbers and is an ap-
propriately selected function. Precise assumptions concerning
the sequence and function that ensure convergence will
be given in the next sections. It is convenient to assume that
function can be presented in the form

Then, sequence is expressed by means of

(6)

The most popular is Gaussian kernel given by

(7)

(8)

B. Application of Orthogonal Series

Let , be a complete orthonormal system
in , such that

(9)

It is well known that, the system composed of all possible
products

(10)

is a complete orthonormal system in , where

It constitutes the basis for construction of the following se-
quence

(11)

where depends on the length of the learning sequence, i.e.,
. It can be given in a shortened form as

(12)

where and .
If , then we design the PNN based on the

Hermite series given by

where

and . It is easly seen that the or-
thonormal functions of the Hermite series can be recursively
generated by

It is known [39] that for the Hermite series .
If , then we design the PNN based on the Laguerre

series given by

where

and . It is easly seen that the or-
thonormal functions of the Laguerre series can be recursively
generated by

It is known [39] that for the Laguerre series const .
If , then we design the PNN based on the Le-

gendre series given by

where

and . It is easly seen that the orthonormal
functions of the Legendre series can be recursively generated by
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It is known [39] that for the Legendre series .
In some applications it is convenient to use multiple Fourier

series. We present two different multiple Fourier series.
1) Expansions Based on Dirichlet’s Kernel: It is well known

[20] that the functions

are orthonormal and complete over the -dimensional cube

The Dirichlet’s kernel of order is given by

2) Expansion Based on Fejer’s Kernel: The multidimen-
sional Fejer’s kernel of order is given by

where

III. GENERALIZED REGRESSION NEURAL NETWORKS IN

STATIONARY ENVIRONMENT

Let be a pair of random variables. takes values
in a Borel set , whereas takes values in . Let

be the marginal Lebesgue density of . Based on a sample
of i.i.d. observations of we wish

to estimate the regression of on given by (2).
To estimate function (2) we propose the following

(13)

where

(14)

and estimator is given by

(15)

Fig. 1. Scheme of GRNN.

In Fig. 1 we show the neural-network implementation of esti-
mator (13).

Example 1: (Nadaraya [19] and Watson [41]): Applying the
Parzen kernel to estimator (13) one gets

(16)

Several results concerning convergence of estimator (16) can be
found in [9], [13], and [14].

The recursive version of procedure (13) is given as follows:

(17)

where

(18)

(19)

Observe that procedures (18) and (19) differ from (14) and
(15). Formulas (18) and (19) can be expressed in the recursive
form

(20)

(21)

where and . The block diagram of the re-
cursive GRNN corresponding to (17), (20), and (21) is depicted
in Fig. 2.

Example 2: (Rutkowski [23], [24]): Since the orthogonal se-
ries kernel is less popular than the Parzen kernel we will explain
how the orthogonal series method leads to density and regres-
sion function estimators. Let us define
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Fig. 2. Recursive GRNN.

We assume that functions and have the representations

where

We truncate the infinite orthogonal expansions as follows:

The coefficients and can be estimated by unbiased
estimators

Replacing in and coefficients and by their
estimates and we get

where depends on the length of the learning sequence, i.e.,
. Finally we get a nonrecursive estimate of regression

given by (13). We will now derive the recursive orthogonal
series regression estimate. Note that and can be
expressed in the form

Replacing by in the last two expressions we get

The above formulas can be presented in the recursive forms

and where and . Thus, the unknown
regression function is estimated recursively by (17) based
on the orthogonal series method.

It should be noted that the orthogonal series method is
also applicable when the inputs in model (4) are
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not random and are contained in the interval (see
Rutkowski [25], [26]). Let us partition interval into

regions , where ,
and . Assume that the input signals are selected so
that . We expand the regression function in the
orthogonal series

where

As the estimator of we take

We truncate the infinite orthogonal expansion as follows:

and estimate by

where is a sequence of integers. The convergence proper-
ties of are investigated in [25] and [26].

IV. PRELIMINARIES TO GRNN IN

TIME-VARYING ENVIRONMENT

Here we study a general problem of learning in the nonsta-
tionary environment. The results and theorems will be a starting
point for construction of the GRNN in the next sections. Let us
consider a sequence , of independent
pairs of random variables, where represents random vari-
ables having the probability density taking values in the set

and represents random variables taking values in
the set .

We assume that time-varying probability distributions of the
above random variables are completely unknown.

Let us define the following function

(22)

From the assumption that the probability distributions are com-
pletely unknown, it follows that the sequence of functions (22) is
also unknown. In this paper, the goal of learning will be tracking
the changing function .

Let be a sequence of numbers satisfying the following
conditions:

(23)

We will consider a nonparametric learning procedure of the fol-
lowing type:

(24)

Comparing (24) to (21) we realize that algorithm (21) is a spe-
cial case of the general procedure (24); if and .
Similarly, procedure (24) reduces to recursion (20) if .

The measure of quality of the learning process in a given point
can be

(25)

Of course, sequence in a given point is a sequence
of random variables. We will show that

Define

(26)

Theorem 1: If in a certain point , the following conditions
are satisfied:

(27)

(28)

(29)

then

(30)

Theorem 2: If in a certain point , the following conditions
are satisfied:

(31)

(32)

(33)

then

(34)

Theorem 3: If the following conditions are satisfied:

(35)

(36)

(37)

(38)

then

(39)
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Fig. 3. Structual scheme of GRNN in time-varying environment.

where —positive constants and

(40)

with for and for .

V. PROBLEM DESCRIPTION AND PRESENTATION OF THE GRNN
IN TIME-VARYING ENVIRONMENT

The problem of nonparametric regression boils down to
finding an adaptive algorithm that could follow the changes
of optimal characteristics expressed by (4). This algorithm
should be constructed on the basis of a learning sequence, i.e.,
observations of random variables

We assume that pairs of the above random variables are inde-
pendent. In points , where , the characteristics of the
best model (4) can be expressed as

(41)

where corresponds to (22) if .
Because of this, the adaptive algorithm that is able to follow
changes of unknown characteristics of the best model , will
be constructed on the basis of a general procedure (24). The
algorithm has the form

(42)

where is expressed by means of (24) and is a recurrent es-
timator of the density given by (21). Observe that procedures
(42) and (17) are equivalent when , i.e., in the sta-
tionary case. It is understandable that sequences that are in
the numerator and denominator of (42) can be of a different type.
If sequences are of the same type (e.g., based on the Parzen
kernel), they generally should meet different conditions. In the
block diagram (Fig. 3) of the GRNN that realizes algorithm (42)
sequence present in the numerator of (41) was differenti-
ated from sequence present in the denominator of that ex-
pression. In situation where there is no doubt, corresponding
indexes at sequences and as well as and will
be omitted.

VI. CONVERGENCE OF THE GRNN IN TIME-VARYING

ENVIRONMENT

The theorem presented below describes general conditions
ensuring convergence of algorithm (42).

Theorem 4: (Pointwise Convergence of Algorithm (42) in
Probability and With pr. 1): Let us assume that the following
conditions are satisfied:

i) Condition A:

(43)

ii) Condition B:

(44)

iii) Condition C:

(45)

Then, for algorithm (42) we have

(46)

Let us point out that condition A is satisfied when conclusions
of Theorems 1 and 2 are true. Condition B reflects the require-
ment of the convergence of the estimator of the density function
[expressed by (21)] and condition C imposes certain assump-
tions on the speed of this convergence. Of course, when is a
bounded sequence, condition C boils down to condition B.

Now we will consider two methods of construction of al-
gorithm (42). We will present procedures based on the Parzen
kernel and on the orthogonal series method. In both cases we
will present assumptions that guarantee satisfaction of condi-
tions A, B, and C and, as a result, convergence (46). In this paper,
we use the following symbols:

(47)

(48)
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Fig. 4. Recursive generalized regression neural network based on the Parzen kernel in time-varying environment.

In Sections X–XII, we will discuss in detail regressions de-
scribed by the equation

(49)

where

(50)

In such a situation, (47) and (48) take the form

(51)

(52)

VII. THE GRNN BASED ON THE PARZEN KERNEL

The structural scheme of the system that realizes algorithm
(42) on the basis of the Parzen kernel is depicted in Fig. 4. as-
suming use of kernel (6) and the normalization of vectors
and . In order to differentiate sequences and functions
present in the numerator and denominator of (42), symbols
and as well as and are used. Condition A will be
connected with the selection of sequence and conditions B
and C with the selection of sequence . Now, we will present
assumptions that guarantee satisfaction of conditions A, B, and
C of Theorem 4.

a) Condition A As we remember (Section II), kernel
can be expressed in the following way:

(53)

Let us assume that

(54)

(55)

(56)

(57)

For , the above conditions are satis-
fied by kernel (8). For , the condi-
tions are met by the function

Let us introduce the following symbol:

(58)

where
.

We will associate parameter
with smooth properties of function

. The following theo-
rems guarantee satisfaction of condition
A.

Theorem 5: Let us assume that function satisfies condi-
tions (53)–(57), and one of the following assumptions
holds:

(59)

(60)

If function changes with time in such a way that

(61)

(62)

then
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Theorem 6: Let us assume that function satisfies condi-
tions (53)–(57), and one of the following assumptions
holds:

(63)

(64)

If function changes with time in such a way that

(65)

(66)

then

It is worth mentioning that (59) and (63) are weaker than the
alternative (60) and (64) as far as the selection of sequence
is concerned. However, while designing the system that realizes
algorithm (42) one should also take into account information
that may be possessed about functions and , because the
mentioned assumptions depend also on and [(51) and
(52)]. Assumptions (62) and (66) concern certain conditions of
smooth properties of function . As we will see later (Sec-
tions X–XII), for regressions with various types of nonstation-
arity, they take a more concrete form.

b) Condition B A recurrent estimator (21) of the density
function with the Parzen kernel was
studied in [7], [8], [13], [42]. The conver-
gence of this estimator could be obtained
by the use of general Theorems 1 and 2.
However, one should remember that these
theorems concern a nonstationary situa-
tion, so the conditions obtained would be
quite strong. Therefore, results concerning
the convergence of estimator (21) will be
taken from [8] and [13] that were men-
tioned above. Let us assume that
and kernel satisfies conditions

(67)

Devroye [8] showed that

(68)

implies

(69)

in probability, and

(70)

implies convergence (69) with pr. 1,
whereas both these convergences occur in
the following points

i) in every point of continuity of if

(71)

ii) in Lebesque points of function if
is bounded,

iii) in Lebesque points of function if
satisfies the condition

(72)

It is worth reminding that Lebesque points
are points of continuity of the function and
almost all points . The speed of the con-
vergence of procedure (21) can be evalu-
ated by means of expression (see [13])

(73)

if density function has continuous partial
derivatives up to the third order.

c) Condition C) As already mentioned, this condition im-
poses certain assumptions on the speed
of convergence of estimator (21). Let us
assume that density function has con-
tinuous partial derivatives up to the third
order. With the use of reasoning similar to
that in [8] and using results of [13] it is pos-
sible to show that convergence (45) in ver-
sion “in probability” is implied by

(74)

(75)

whereas convergence (45) with pr. 1 is im-
plied by (74) and

(76)

Analyzing the above assumptions, we may
raise the following problem: how fast can

grow to infinity (if is an unbounded
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Fig. 5. Recursive GRNN based on the orthogonal series kernel in time-varying environment.

sequence) so that condition C could be sat-
isfied at all? Let, e.g., in a certain point

Of course, (74) and (75) are now satisfied
when

while (74) and (76) are satisfied when

In other words, algorithm (42) has tracking
properties if function does not grow
to infinity too fast. Other limitations
regarding sequence result from as-
sumptions formulated in Therorems 5
and 6. This problem will be discussed
in detail in the subsequent sections, con-
sidering regressions of various types of
nonstationarity.

VIII. THE GRNN BASED ON THE ORTHOGONAL

SERIES KERNEL

The structural scheme of the GRNN that realizes algorithm
(42) on the basis of the orthogonal series kernel is shown in
Fig. 5. In order to differentiate between sequences that appear
in the numerator and denominator of (42), symbols and

were used. Like in the previous section we will specify
assumptions ensuring satisfaction of conditions A, B, and C of
Theorem 4. Condition A will be connected with the selection of
sequence and the conditions B and C will be connected
with the selection of sequence .

a) Condition A Let us denote

(77)

where

The following two theorems guarantee the
meeting of condition A.

Theorem 7: Let us assume that , (9) and (61)
hold and one of the following two conditions is satisfied

(78)

(79)

If

(80)

then

Theorem 8: Let us assume that , assumptions
(9) and (65) hold and one of the following two conditions is
satisfied

(81)

(82)

If

(83)

then
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The problem of convergence (80) and (83) is not a standard
problem of the orthogonal series theory because the expanded
function changes with the increase of . Even if n is fixed,
the problem of convergence of multidimensional series

(84)

is not trivial. It was investigated in more detail for the Fourier
series (e.g., Sjolin [31]) but it is less known for the multidimen-
sional Hermite series. For these two series, we will specify con-
ditions (80) and (83). It is possible to show (the proof can be
found in the Appendix) that these conditions take the following
form:

(85)

(86)

where

Parameter we will be associated with smooth properties of
function .

The aforementioned conditions were derived under the fol-
lowing assumptions:

i) Hermite series: and condition (84)
holds

ii) Fourier series: , (84)
holds and it is assumed that function and its partial
derivatives up to the order of are equal 0 on the
boundary of .

Conditions (85) and (86) are connected with the assessment
of the “tail” of series (84); it follows from (77). Unfortunately,
the assessment of the “tail” of an orthogonal series requires
making rather complicated assumptions concerning functions
expanded into this series. However, assumptions of this type are
typical in all works devoted to the orthogonal series theory (see,
e.g., monograph [30]).

b) Condition B A recurrent estimator (21) of a den-
sity function constructed on the basis
of orthogonal series was proposed by
Rutkowski in [23] and [24]. Let us assume
that . Now, the condition

(87)

implies a weak convergence (44) and

(88)

implies a strong convergence (44) at every
point where

(89)

where . If (89) is
true for almost every , then a weak and
a strong convergence of procedure (21) is
true also almost everywhere. Convergence
(89) depends on the orthonormal series
used and on the properties of function .
In the one-dimensional (1-D) case, ,
the following results are known.

— For the Fourier, Legendre, Laguerre, and Hermite se-
ries, various conditions imposed on function , en-
suring point and uniform convergence (89) were given
by Sansone [30];

— for the Haar series, (89) is true in almost all points
for any function (Alexits [2]);

— for the Fourier series, (89) is true in almost all points
for any function (Carleson [5]); a similar re-

sult may be obtained for Legendre, Laguerre, and Her-
mite series using theorems of equivalent convergence
(Szegö [37]);

— for the Fourier series with Fejer’s kernel (see Sec-
tion II), convergence of (89) is true in almost all points

for any function (Sansone [30]); this result
may be extended for Laguerre and Hermite series with
the help of the above mentioned theorems on equiva-
lent convergence.

Unfortunately, in the multidimensional
case, the conditions for the convergence
(89) are known only for the Fourier series

— for any function (89) is true in almost all points
(Sjolin [31]).

— for the multidimensional Fourier series with Fejer’s
kernel, convergence (89) is true uniformly if is a con-
tinuous function (Nikolski [20]).

The speed of convergence of estimate
(21) can be evaluated by

(90)

where
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c) Condition C Concrete assumptions imposed on se-
quence that appear in the denomi-
nator of (42) that guarantee the satisfaction
of condition C can be derived with the use
of reasoning similar to that in Rutkowski
[24]. Now, we obtain a weak convergence
(45) if

(91)

and a strong convergence (45) if

(92)

In both cases, we should also assume that

(93)

Condition (93) can take a concrete form
depending on the orthogonal series applied
and assumptions imposed on function .
Assuming that the orthogonal expansion
of function is convergent in point (or
in almost every point ), i.e., (89) holds we
will use the Hermite and Fourier orthog-
onal systems. Let us define

Let us assume that . Now, (93)
takes the form

(94)

where

In other words, the satisfaction of con-
dition C depends on the smooth proper-
ties of an unknown function . From (91)
and (92) it follows that cannot grow
to infinity too fast. If, e.g.,

, then parameter should be
contained within the same bounds as in the
case of the use of the algorithm based on
the Parzen kernel.

IX. SPEED OF CONVERGENCE

The problem of investigating the speed of the convergence of
procedure (42) which is a quotient of two algorithms is a rela-
tively complex one. The following theorem allows us to assess

the speed of the convergence of procedure (42) on the basis of
the knowledge of the speed of the convergence of procedures
(21) and (24):

Theorem 9: For any , the following inequality holds

(95)

Using the above inequality, we will later assess the speed of con-
vergence of procedure (42) used for regressions with particular
types of nonstationarity.

In the context of stationary problems, other authors also con-
sidered nonparametric procedures (based on the Parzen kernel)
that are a quotient of two algorithms. Moreover, they carried
out an optimization of the speed of convergence. However, they
assumed that which is justified in a stationary case.
In a nonstationary case, sequences and as well as
and which are present in the numerator and denominator
of (42) should usually satisfy various conditions, which makes
their optimal selection difficult [e.g., in the sense of minimizing
the right-hand side (RHS) of (95)]. The matter is further com-
plicated by the necessity of selection of sequence (in the sta-
tionary case ) and by the influence of nonstationarity
in an expression that estimates the speed of convergence of the
numerator of procedure (42) and in the RHS of (95). That is
why sequences , and will not be the subject of
optimization. We will be satisfied with the fact that the condi-
tions given in this paper allow us to design a system that real-
izes algorithm (42), i.e., to select sequences , and (or

) implying possession of tracking properties by
this algorithm, which is by no means an easy task in a nonsta-
tionary situation. Expression (95), as aforementioned, will be
used several times in the next sections for analysis of the influ-
ence of various factors on the speed of convergence of procedure
(42).

X. MULTIPLICATIVE NONSTATIONARITY

Let us consider regressions described by (49), where

(96)

where —unknown sequence of numbers, —unknown func-
tion. In Fig. 6, we illustrate an application of the GRNN for
modeling a plant described by (49) with nonstationarity (96).

In Tables I–IV, based on the results of Sections VII and VIII,
we present the conditions implying convergence of algorithm
(42) used for tracking regressions with multiplicative nonsta-
tionarity. Tables I and II give proper conditions for the algorithm
based on the Parzen kernel, whereas Tables III and IV give sim-
ilar conditions for the algorithm based on the orthogonal series
kernel. In order to specify these conditions more precisely, in
Tables III and IV two specific multidimensional orthogonal se-
ries were considered: the Fourier series and the Hermite series.
We should notice that now

(97)
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Fig. 6. GRNN for modeling a plant with multiplicative nonstationarity.

TABLE I
CONDITIONS FOR WEAK CONVERGENCE OF GRNN BASED ON THE PARZEN

KERNEL—MULTIPLICATIVE NONSTATIONARITY

Because of the “separability” of the nonstationary factor ,
assumptions (62) and (66) [as well as (80) and (83)], connected
with smooth properties of function reduce
to assumptions concerning smooth properties of function ,
which simplifies significantly the convergence conditions de-
scribed in Sections VIII and VIII.

Remark 1: Conditions (59)–(62) and (63)–(66) presented in
Tables I and II concern the selection of sequence . Condi-
tions (74), (68), (75), and (70), (76) concern the selection of
sequence (according to symbols in Fig. 7). In a similar way,
(61), (78), (79), (80), and (65), (81), (82), (83) presented in Ta-
bles III and IV concern the selection of sequence . Con-
ditions (87), (92), (91), and (88), (93) concern the selection of
sequence (according to symbols in Fig. 8).

It is obvious that sequence cannot change in a completely
arbitrary way so that algorithm (42) could possess the tracking
property. Nevertheless, we will show that the class of considered
sequences is quite wide. From the point of view of main-
taining tracking properties by algorithm (42), situations when
characteristic (96) is for a certain divergent to infinity or does
not have a finite limit, seem to be particularly difficult. Such
cases are illustrated by the following examples of sequences :

a)

where —real numbers and
.

TABLE II
CONDITIONS FOR STRONG CONVERGENCE OF GRNN BASED ON THE PARZEN

KERNEL—MULTIPLICATIVE NONSTATIONARITY

TABLE III
CONDITIONS FOR WEAK CONVERGENCE OF GRNN BASED ON THE

ORTHOGONAL SERIES METHOD—MULTIPLICATIVE NONSTATIONARITY

TABLE IV
CONDITIONS FOR STRONG CONVERGENCE OF GRNN BASED ON THE

ORTHOGONAL SERIES METHOD—MULTIPLICATIVE NONSTATIONARITY

b)

where , are real numbers,
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Fig. 7. Illustration of simulation 1 (a = 0:8; H = 0:3;H = 0:4; k =
k = 1:5).

c)

where are
real numbers, .

d)

where are real numbers, ,
and .

e)

where are
real numbers,

f)

Fig. 8. Illustration of simulation 2 (a = 0:9;Q = 0:2;Q = 0:2; k =
k = 1).

where are
any real numbers, .

Let us now choose in algorithm (42) the following pa-
rameters:

for the algorithm based on the Parzen kernel and

for the algorithm based on the orthogonal series method,
( stands for the integer part of ). In both cases we take

Analyzing all the conditions given in Tables I–IV it is possible
to specify precisely within what limits the constants
present in examples (a)–(f) should be contained so that algo-
rithm (42) could possess tracking properties. The results are
shown in Tables V and VI.
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TABLE V
CONDITIONS IMPOSED ON CONSTANTS t; t ; � FROM EXAMPLES (a)–(f);

WEAK CONVERGENCE

TABLE VI
CONDITIONS IMPOSED ON CONSTANTS t; t ; � FROM EXAMPLES (a)–(f);

STRONG CONVERGENCE

It is worth emphasizing that for the designing of a system
that would realize algorithm (42), i.e., for a proper selection
of sequences , and , it is not necessary to precisely
know sequences that were specified in examples (a)–(e) but

only to know the information contained in Tables V and VI. For
example, in order to track changes in the model

where —unknown parameter, —unknown function, it is pos-
sible to use algorithm (42) if for week conver-
gence and for strong.

We will now investigate the speed of convergence of algo-
rithm (42). For this purpose one should:

1) use dependence (95),
2) determine constants , and that are present in

assumptions of Theorem 3 and then, with use of this
theorem, evaluate the speed of convergence of

3) on the basis of inequalities (73) or (90), evaluate the speed
of convergence of

Example 3: Assuming that

we will evaluate the speed of convergence of algorithm (42)
based on the Parzen kernel and the orthogonal series kernel. We
will assume that sequences , and are of a power type.

A. Speed of Convergence of Algorithm (42) Based on the
Parzen Kernel

In this case we have

where parameter is connected with smooth properties of func-
tion . Omitting some simple calculations, we obtain

(98)

where

An optimal selection of parameters , and , minimizing
the RHS of (98) seems to be a complicated problem. However,
this expression may be used for designing a system that real-
izes algorithm (42) in such a way that it could possess tracking
properties. Analyzing (98) we realize that parameters and

should satisfy

We should point out that the maximum value of , with which
the algorithm has tracking properties, depends on parameter
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specifying smooth properties of function . From the above
inequalities it follows that if

then algorithm (42) is convergent. Let us notice that an increase
of dimension results in a decrease of the above range and an
increase of smooth properties results in an increase of this range.

B. The Speed of Convergence of Algorithm (42) Based on the
Orthogonal Series Kernel

Referring to symbols from Theorem 3, we obtain

where
for the Hermite series
for the Fourier series,

and parameter is connected with smooth properties of function
. The speed of convergence of procedure (42) can be now

expressed in the following way

(99)

where

Analyzing the above inequality it is possible to say that algo-
rithm (42) has tracking properties if

with use of the Fourier system and

with use of the Hermite system.
Of special interest is the fact that the maximum value of

with which the algorithm still has tracking properties does not
depend on the dimension .

XI. ADDITIVE NONSTATIONARITY

Let us consider plants described by (49), where

(100)

is an unknown sequence of numbers, is an unknown func-
tion. Observe that in this case

(101)

Presently, assumptions (62) and (66) as well as (80) and (83)
connected with smooth properties of function
are replaced by assumptions concerning smooth properties of

functions and . This fact significantly simplifies the con-
vergence conditions described in Sections VII and VIII and fa-
cilitates the designing of a system that realizes algorithm (42).

The conditions for convergence of procedure (42) are very
similar to those that are given in Tables I–IV concerning
multiplicative nonstationarity. So, as examples of sequences
that satisfy convergence conditions, we may mention sequences
specified in examples (a)–(e) of the previous section.

XII. NONSTATIONARITY OF THE TYPE “SCALE CHANGE” AND

“MOVABLE ARGUMENT”

Let us consider regressions described by (49), where

(102)

(103)

where
— unknown sequence of numbers;
— unknown sequence of vectors ,

— unknown function.
With reference to the nonstationarity (102) we use the ex-

pression “scale change,” whereas the nonstationarity (103) is
referred to as “movable argument.” Of course

(104)

for model (102) and

(105)

for model (103). In Section X nonstationary factor and in
Section XI nonstationary component were “separable” from
function , significantly simplifying convergence conditions.
The present situation is more complicated. Particularly, (80) and
(83), taking form (85) and (86) for the Fourier and Hermite se-
ries, now are more complicated. That is why with reference to
regressions (102) and (103) we will use the GRNN based only
on the Parzen kernel. With the help of results of Section VII, in
Tables VII and VIII are shown conditions ensuring the conver-
gence of algorithm (42) tracking changing characteristics (102)
and (103). Conditions (59), (60), (63), and (64) concern the se-
lection of sequence and (62), (67), (66), and (70) concern the
selection of sequence (according to symbols in Fig. 7). Let
us now assume that sequences and are of the following
type.

i)
ii)

Employing Theorem 9 and arguments similar to those in Sec-
tion X, we obtain the following expressions defining the speed
of convergence of algorithm (42).

i) If then

(106)
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TABLE VII
CONDITIONS FOR WEAK CONVERGENCE OF GRPNN BASED ON THE PARZEN

KERNEL—NONSTATIONARITY OF THE TYPE “SCALE CHANGE” AND

“MOVABLE ARGUMENT”

TABLE VIII
CONDITIONS FOR STRONG CONVERGENCE OF GRPNN BASED ON THE PARZEN

KERNEL—NONSTATIONARITY OF THE TYPE “SCALE CHANGE” AND

“MOVABLE ARGUMENT”

where

Presently, algorithm (42) has tracking properties if

It means that parameter should be contained within the
range

where . In a 1-Dl case

Along with an increase of parameter specifying smooth
properties of functions and , the range in which pa-
rameter is contained widens, not exceeding the interval

. The increase of dimension results in the de-
crease of the above mentioned range.

ii) If then

(107)

where

In other words, algorithm (42) has tracking properties if
for

Assuming that it is possible to select such pa-
rameters and in algorithm (42) that would satisfy
the above inequalities.

XIII. SIMULATION EXAMPLES

In this section we present four simulations in order to test the
GRNN studied in the paper.

1) Simulation 1 (Parzen Kernel): We consider the following
nonstationary regression

The GRNN based on the Parzen kernel has been applied with
the following parameters

The results are depicted in Fig. 7(a) and (b). Fig. 7(a) shows
tracking the nonstationary regression with changing in the
point , whereas Fig. 7(b) displays comparison of a true
regression and estimated by the GRNN for .

2) Simulation 2 (Orthogonal Series Kernel): We consider
the following nonstationary regression

The GRNN based on the Fourier orthogonal series kernel has
been applied with the following parameters:

The results are depicted in Fig. 8(a) and (b). Fig. 8(a) shows
tracking the nonstationary regression with changing in the
point , whereas Fig. 8(b) displays comparison of a true
regression and estimated by the GRNN for .

3) Simulation 3 (Orthogonal Series Kernel): We consider
the following nonstationary regression
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Fig. 9. Illustration of simulation 3 (a = 0:8; Q = 0:1;Q = 0:1; k =
k = 1).

The GRNN based on the Fourier orthogonal series kernel has
been applied with the following parameters:

The results are depicted in Fig. 9(a) and (b). Fig. 9(a) shows
tracking the nonstationary regression with changing in the
point , whereas Fig. 9(b) displays comparison of a true
regression and estimated by the GRNN for .

4) Simulation 4 (Parzen Kernel): We consider the following
nonstationary regression

The GRNN based on the Parzen kernel has been applied with
the following parameters

The results are depicted in Fig. 10(a) and (b). Fig. 10(a) shows
tracking the nonstationary regression with changing in the

Fig. 10. Illustration of simulation 4 (a = 0:8;H = 0:5;H = 0:5; k =
k = 5).

point , whereas Fig. 10(b) displays comparison of a
true regression and estimated by the GRNN for .

XIV. SUMMARY AND DISCUSSIONS

In this paper, two types of the GRNN were studied: a) the
GRNN based on the Parzen kernel, b) the GRNN based on the
orthogonal series method.

Generally, we should say that the convergence of the GRNN
b) is connected with both the convergence of the orthogonal
series and with the speed of this convergence (assessment of
the “tail” of the series). The problem of convergence of the
orthogonal series is less complicated in the scalar case (e.g.,
Sansone [30]), but more complicated in the multidimensional
case, that was investigated in more detail only for the Fourier
series (e.g., Sjolin [31]). An additional problem is the exami-
nation of the orthogonal series speed of convergence because
even in the 1-D case, appropriate results can be obtained with
quite complicated assumptions regarding expanded functions
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which should be “smooth” enough. The selection of a partic-
ular series depends on both boundlessness or unboundedness of
the input signal and on the dimensionality of the problem; if

then the proper series is the Hermite series.
If , then it is reasonable to em-
ploy the Fourier series because its properties are well known.
In the scalar case, when the input signal is bounded, it is pos-
sible to use, among others, the Fourier, the Haar and the Le-
gendre series. The later series is particularly interesting because
the assumptions concerning smooth properties connected with
the application of this series are much weaker than in the case of
application of the Fourier series (Sansone [30]). The above con-
siderations suggest that we should rather use algorithm a) that
is based on the Parzen kernel. However, the orthogonal series
method has a very desirable advantage: if, e.g., sequence (or

) is of type , then the maximum value of at which the al-
gorithm still has tracking properties does not depend on dimen-
sion (contrary to the algorithm based on the Parzen kernel).
Moreover, simulations that were conducted do not discredit the
orthogonal series method, especially when it is used for the iden-
tification of plants with multiplicative and additive nonstation-
arity. A certain problem in the case of applying the algorithm
based on the Parzen kernel may be the selection of function
meeting conditions (54)–(57). This problem will arise for some
types of nonstationarity when a high degree of smooth prop-
erties of functions will be required. In this
paper examples of function were given for which parameter

connected with smooth properties of takes
on the value of 2 and 4.

The examples of particular types of nonstationarity given in
Sections X–XII do not exhaust all the possibilities of application
of the GRNN. In particular, the results can be used for modeling
of plants with nonstationarity that is a combination of cases dis-
cussed in these sections, i.e.,

In the future research we plan to describe nonstationary changes
linguistically and modify flexible neurofuzzy systems [28] for
their modeling.

APPENDIX

Proof of Theorem 1 and 2: Observe that

By making use of (24) and (26) we get

Of course,

Using , true for any and setting
, we obtain

The following inequality is true:

Consequently

(108)

We will now use the following lemma [3].
Lemma: Let be a certain sequence of random

variables. Let us introduce a sequence of functions
. Let , and be sequences

of numbers. Let us assume that

i)

ii)

iii)

a) If

where

then

b) If

where

then
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Applying the above lemma to inequality (108), we obtain the
conclusion of Theorems 1 and 2.

Proof of Theorem 3: We will apply the following lemma
[6]:

Lemma: Let be real numbers such that for

where real. Then

The theorem is a consequence of direct application of that
lemma to (108). Alternatively one can use Watanabe’s [40] re-
sult (for ).

Proof of Theorem 4: Conclusion of this theorem results
immediately from the following inequality:

(109)

Proof of Theorem 5 and 6: Observe that

(110)

Assessment (110) can be alternatively carried out in the fol-
lowing manner:

Of course,

Denote

(111)

Expression (111) can be written as

Expanding functions in the multidimensional
Taylor’s series, we obtain

where . As a result

assuming that functions have continuous partial derivatives
up to the th order. Now, Theorem 5 and 6 are consequences of
Theorems 1 and 2.

Proof of Theorems 7 and 8: Observe that

(112)

Assessment (112) can be alternatively expressed as

Observe that

where

Now both Theorems follow directly from Theorems 1 and 2.
Proof of conditions (85) and (86): Let be the coefficient

of expansion of function into multidi-
mensional Hermite series. If , then

(113)

For the above inequality was presented in [39] and
its generalization for multidimensional case is straightforward.
Assuming that (84) is true, under (113) and (9) with

(see [37]), we obtain

Carrying out similar considerations for the multidimensional
Fourier series (see [15]), we obtain (85) and (86).
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Proof of Theorem 9: We will use ideas presented in work
[13]. Let us consider the following occurrences:

Under (109), occurrences , and imply the occurrence

As a result

which concludes the proof of Theorem 9.
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