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Abstract—The most popular tools for stream data mining are
based on decision trees. In previous 15 years all designed meth-
ods, headed by the VFDT algorithm, relayed on the Hoeffding’s
inequality and hundreds of researchers followed this scheme.
Recently, we have demonstrated that although the Hoeffding
decision trees are an effective tool for dealing with stream data,
they are a purely heuristic procedure; for example classical
decision trees like ID3 or CART cannot be adopted to data
stream mining using the Hoeffding’s inequality. Therefore, there
is an urgent need to develop new algorithms which are both
mathematically justified and characterized by good performance.
In this paper we address this problem by developing a family of
new splitting criteria for classification in stationary data streams
and investigating their probabilistic properties. The new criteria,
derived using appropriate statistical tools, are based on the
misclassification error and the Gini index impurity measures. The
general division of splitting criteria into two types is proposed.
Attributes chosen based on type-I splitting criteria guarantee,
with high probability, the highest expected value of split measure.
Type-II criteria ensure that the chosen attribute is the same, with
high probability, as it would be chosen based on the whole infinite
data stream. Moreover, in this paper two hybrid splitting criteria
are proposed which are the combinations of single criteria based
on the misclassification error and Gini index.

Index Terms—Data stream, decision trees, classification, impu-
rity measure, splitting criterion

I. INTRODUCTION

IN this paper a problem of data stream classification is
considered. A data stream [1], [2], [3], [4], [5], [6] is a

potentially infinite sequence of data elements which arrive
continuously to the system, often with very high rate. Due to
these characteristics traditional data classification algorithms,
designed for static data, cannot be directly applied in this
case. In case of static data the access to data elements is
constantly available, hence they may be processed by the
algorithm as many times as needed. On the other side, each
data element from the stream usually can be processed at most
once because of memory or computational power limitations.
Existing methods should be modified or new algorithms should
be developed taking the mentioned limitations into account.
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Data stream classification algorithms should be resource-
aware [7]. Another issue associated with data streams is
the occurrence of concept drift [8], [9], [10], [11], [12].
The distribution of stream data elements values may evolve
in time. Although this issue is not addressed in this paper
it should be noted that the concept drift also poses many
difficulties in designing appropriate classification algorithms.
In literature there is a variety of methods designed for data
classification. The most popular are artificial neural networks
[13], k-nearest neighbors [14] and decision trees [15], [16],
[17]. In this paper the application of decision trees for data
stream mining is considered. Models learned using decision
trees have many advantages. They are easily interpretable
for users and demonstrate relatively low memory complexity
comparing to other methods. This paper focuses on the most
critical point of decision tree induction algorithms, i.e. the
choice of a splitting attribute in a considered node. In static
decision trees the ’best’ attribute is chosen on the basis of the
data sample S available in the considered node. The choice is
made based on some split measure function. The value of this
function is calculated for all attributes and the attribute which
provides the highest value of split measure is chosen as the
splitting one. In the most popular decision tree algorithms, like
ID3 [15] or CART [16], the split measure function is proposed
as a reduction of some impurity measure g(S). Let us assume
that data elements are characterized by D attributes and can
belong to one of K classes. Let n(S) denote the number of
data elements in S and let nk(S) denote the number of data
elements from the set S which belong to the k-th class. Then
the most popular impurity measures, i.e. information entropy,
Gini index and misclassification error, are expressed in the
following way, respectively

gE(S) = −
K∑
k=1

nk(S)

n(S)
log2

(
nk(S)

n(S)

)
, (1)

gG(S) = 1−
K∑
k=1

(
nk(S)

n(S)

)2

, (2)

gM (S) = 1− maxk{nk(S)}
n(S)

. (3)

In data stream scenario the problem of choosing the most
relevant attribute is more complicated since data elements
arrive continuously to the considered node. A special splitting
criterion is required to determine if the current number of
data elements n(S) in the node is sufficient to make a proper
split. In [18] the authors proposed the Very Fast Decision Tree
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(VFDT) algorithm. The core of this method is the Hoeffding
tree, in which the Hoeffding’s inequality is used to obtain
the bound for the difference between split measure values for
two attributes. Let ∆gimax

(S) and ∆gimax2
(S) denote values

of some split measure function for attributes with the highest
and the second highest value of this split measure, respectively.
The bound obtained in [18] was given in the following form

∆gimax
(S)−∆gimax2

(S) > ε =

√
R2 ln (1/δ)

2n(S)
, (4)

where R is the range of values for the applied impurity
measure, e.g. R = log2K for information entropy. The
authors of this bound claimed that if it is satisfied, then
the imax-th attribute is with probability at least 1 − δ the
same as it would be chosen based on the whole infinite
data stream. Unfortunately there are several mistakes made
in this approach. First, the Hoeffding’s bound is valid only
for the sum of random variables, hence it cannot be applied to
nonlinear functions such as information entropy or Gini index.
Although it can be applied to the misclassification error (for
the first time it is shown in this paper - see subsection II-A), the
range R appearing in the bound ε should be twice larger than
it is proposed in [18] since the difference between two values
of split measure is investigated. Additionally, the authors of
[18] made a simplifying assumption that the attributes other
than the imax-th and imax2-th provide sufficiently smaller
split measure values. In consequence the probability that these
attribute provide the highest split measure value according to
the whole data stream is negligible. Under this assumption
the probability that the imax-th attribute is the same as would
be chosen using the whole data stream is at least equal to
1δ. However, the assumption from [18] is not always true
and actually the mentioned probability can be bounded by
(1 − δ)D−1. The problem with mathematical inconsistency
concerning bound (4) was pointed out by various authors
[19], [20], [21], [22]. In [19] the McDiarmid’s inequality was
proposed instead of the Hoeffding’s one as a statistical tool to
obtain splitting criteria for information gain and Gini gain. In
[20] new impurity measures were proposed, for which the Ho-
effding’s inequality can be properly applied, and a correction
for bound (4) proposed originally in [18] was suggested. In
[23] and [24] the authors proposed a method which combines
the Taylor’s theorem with the Gaussian approximation and
applied it to information gain and Gini gain, respectively. A
split measure function based on the impurity measure called
the misclassification error was introduced in [25] for the
problem of decision trees induction for data streams. The
Gaussian approximation was used to obtain an appropriate
splitting criterion in this case. Additionally, new hybrid split-
ting criterion combining advantages of misclassification error
and Gini index was proposed as well. In the same paper also
an analytical example of violating the splitting criterion based
on bound (4) for simple dataset was presented. In [21], [22]
the authors derived bounds for biases of estimators for both
information gain and Gini gain. In [26] the authors applied
the Hoeffding’s inequality not directly to the values of split

measure function but to its arguments expressed as appropriate
fractions of data elements.

Despite of the aforementioned misstatements concerning
bound (4), it should be noted that the Hoeffding’s tree still
can be considered as a heuristic tool for data stream mining.
In fact, for many datasets it provides very satisfactory results
of classification accuracy. For this reason the Hoeffding’s tree
and its derivatives stand as a basis for many new methods used
in data stream classification [9], [27], [28], [29], [30], [31].

In view of the aforementioned mistakes concerning bound
(4), new splitting criteria are required, based on solid mathe-
matical foundations. In this work two impurity measures are
considered, i.e. misclassification error (3) and Gini index (2).
Based on these functions corresponding split measures can be
defined. For convenience in further investigations only binary
trees will be considered, i.e. it is assumed that the partition of
set S with respect to the i-th attribute provides two disjoint
complementary subsets: SLi

and SRi
.

It is important to notice that this paper not only brings
significant novelty in the theoretical aspect of data stream clas-
sification using decision trees. It also proposes to generalize
the heuristic bound given in the right hand side of formula
(4) and to induce decision trees with the bound lower than
the one proposed in original Hoeffding decision trees (see
Remark 1 and formula (5)). It should be noted that in this
paper, like in [18] where the Hoeffding trees were introduced,
only stationary data streams are considered, i.e. the problem
of concept drift is not taken into account. In brief, the main
contribution of this paper can be summarized as follows:
• A novel framework for defining splitting criteria is pro-

posed. More precisely splitting criteria used in the online
decision trees are divided into two types, depending on
the interpretation of result they provide. Type-I criterion
guarantees that, with assumed probability, the attribute
chosen based on it maximizes the expected value of split
measure. On the other hand type-II criterion ensures that,
with assumed probability, the chosen attribute is the same
as it would be chosen based on the whole infinite data
stream.

• A new type-I splitting criterion (see Corollary 1) is
proposed for accuracy gain split measure function which
is based on the rarely used impurity measure called mis-
classification error. The Hoeffding’s inequality is used, in
a proper manner, to obtain the desired criterion.

• A new type-I splitting criterion (see Corollary 2) is
presented for split measure called Gini gain (which is
based on the Gini index impurity measure). It is obtained
using the McDiarmid’s inequality and it significantly
improves our previous result [19]. Such an improvement
allows to reduce four times the number of data elements
required to make a decision.

• A type-II splitting criterion (see Corollary 3) is obtained
for the Gini gain split measure. It merges the previously
mentioned criterion with the bound for Gini gain bias
values derived in [22].

• Two hybrid splitting criteria are proposed (see Corollaries
4 and 5), which combine component (single) criteria
obtained for different impurity measures, i.e. the misclas-
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Fig. 1. Flowchart of new results (splitting criteria) presented in this paper.

sification error and the Gini index, and we claim that such
a hybridization, based on theoretically justified splitting
criteria, leads to the best performance of decision trees.
The first one is a hybrid type-(I + I) criterion which
merges the type-I splitting criterion for misclassification
error and type-I criterion for Gini index. The second one
is a hybrid type-(II+ I) criterion. In this case the type-I
criterion for Gini index is replaced by the type-II one.

• The classification accuracies of Online Decision Trees
with various splitting criteria proposed in this paper are
compared with each other. A comparison of proposed
solutions with original Hoeffding’s Trees described in
[18] is presented as well.

The flowchart of all splitting criteria proposed in this paper is
depicted in Fig. 1.

Remark 1: It is worth noticing that bound (4) proposed
originally in [18], its correction in [20], as well as our bounds
(16) and (30) proposed in Theorem 1 and Theorem 2 of
this paper, respectively, can all be expressed in the following
general form

ε = C

√
ln (1/δ)

n(S)
. (5)

Constant C for bounds (4), (16) and (30) is equal to R/
√

2,√
2 and

√
8, respectively. Whereas the last two values

are theoretically justified by Theorems 1 and 2, the value
corresponding to bound (4) does not have mathematical
foundations (i.e. it is heuristic), as it was previously stated.
Therefore, nothing stands in the way to construct a splitting
criterion with a bound equal to, for example, half of the
value given in (4), i.e. with C = 0.5R/

√
2. Decision trees

containing such a splitting criterion are also compared with
solutions proposed in this paper and the results are very
surprising - the mentioned decision trees provide even better

accuracies than Hoeffding decision trees (see section IV-E).

The rest of the paper is organized as follows. In section
II new splitting criteria are presented in details. Each single
splitting criterion is supported by an appropriate mathematical
theorem. Additionally, two hybrid splitting criteria are pro-
posed, which combine single criteria obtained for different
split measures. In section III a general form of the Online
Decision Tree is recalled. It is equivalent to the Hoeffding’s
Tree algorithm presented in [18], however, the unjustified
splitting criterion is replaced by the proper ones. Addition-
ally, a modified version of that algorithm suited for hybrid
splitting criteria is also presented. In section IV the results of
experimental simulations are depicted. Section V concludes
the paper.

II. NEW SPLITTING CRITERIA

In this paper two types of splitting criteria are considered.
Each type is characterized by a different interpretation of the
result it provides. The distinction between two types results
from the fact that the extrapolation of standard (batch) decision
tree algorithms into the online scenario can be done in (at least)
two ways. The attributes chosen to split a node have a slightly
different interpretation in the case of each splitting criterion
type. The considerations are valid only if the probability
distribution of data elements does not change in time, i.e. the
data stream is stationary. Let ∆gi(S) be some split measure
function calculated for the i-th attribute based on sample
of data elements S. Then E [∆gi(S)] is its expected value.
Moreover, let ∆gi denote the value of split measure which
will be obtained for the whole infinite data stream (i.e. if the
cardinality of set S is infinite). It is important to note that if
the estimator ∆gi(S) is biased, then E [∆gi(S)] differs from
∆gi. This difference determines that there are two types of
splitting criteria:

I) type-I splitting criterion guarantees that the imax-th
attribute, chosen based on it, provides with probability
at least (1 − δ)D−1 the highest expected value of split
measure function for n(S) data elements among all
attributes, i.e.

E [∆gimax
(S)] = max

i∈{1,...,D}
{E [∆gi(S)]}. (6)

II) type-II splitting criterion guarantees that the imax-th
attribute, chosen based on it, is the same, with probability
at least (1− δ)D−1, as it would be chosen based on the
whole infinite data stream, i.e.

∆gimax
= max
i∈{1,...,D}

{∆gi}. (7)

The distinction between the type-I and type-II criteria can
be understood as follows. Let S∞ be a data stream with an
infinite number of data elements. If we could take all of them,
calculate split measure function values for each attribute and
choose the one with the highest value, then with probability
at least (1 − δ)D−1 it would be the attribute chosen based
on a data sample using the type-II splitting criterion (if,
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obviously, the criterion was satisfied). Now let us partition
the stream S∞ into an infinite number of subsets Si, each
having exactly n data elements in it. Let us calculate for each
attribute an arithmetic average of split measure values for all
subsets Si and, as previously, choose the attribute with the
highest obtained value. Then, this attribute is with probability
at least (1− δ)D−1 the same as the attribute chosen based on
the data sample of size n using the type-I splitting criterion (if,
obviously, the criterion was satisfied). Since the estimator of
split measure function calculated using a sample of n elements
is biased (at least for the information gain, Gini gain and
accuracy gain), then these two types of criteria can result in
choosing different attributes. Actually, in the literature so far,
including the basic paper [18], but also [19], [20], [23]- [25],
the type-I splitting criteria were considered. Recently only in
[21], [22] the authors introduced the bias term into the criteria
and, although they did not call it in this way, for the first time
proposed the type-II splitting criteria.

In [22] a bound for difference between information gain
values for two attributes was presented. The bound, adapting
it to notations used in this paper, is given in the following
form

ε = 2 ln (n(S))

√
2 ln (4/δ)

n(S)
+

4

n(S)
. (8)

Based on this bound a type-II splitting criterion for decision
trees with information gain split measure can be created. After
neglecting the bias term in (8) another form of bound can be
proposed

ε = 2 ln (n(S))

√
2 ln (4/δ)

n(S)
, (9)

which can be used to construct a type-I splitting criterion.
However, as it will be presented in experimental section,
bounds (8) and (9) are impractical in real applications. Due to
the logarithmic term, the number of data elements needed to
make a decision about the split is rather large. In consequence,
the accuracy of induced decision tree grows very slow as
the processing of data stream continues. Therefore, in this
section new splitting criteria for split measures based on
misclassification error (accuracy gain) and Gini index (Gini
gain) are proposed. In the case of misclassification error only
type-I splitting criterion is obtained, whereas for Gini index
splitting criteria of both types are presented.

A. Misclassification error

Based on the misclassification error (3), similarly to the
accuracy-based quality gain proposed in [20], a split measure
called the accuracy gain can be proposed as a difference
between misclassification error for set S and weighted average
of misclassification error values for sets SLi

and SRi

∆gMi (S) = gM (S)− n(SLi)

n(S)
gM (SLi

)− n(SRi
)

n(S)
gM (SRi

).

(10)
Combining (3) with (10) one obtains

∆gMi (S) = gM (S)− 1 + (11)
maxk{nk(SLi)}+ maxk{nk(SRi)}

n(S)
.

In further considerations only differences between split
measures for different attributes will be taken into account.
Since the term gM (S)−1 does not depend on attribute, it can
be neglected. The truncated accuracy gain is considered, i.e.

gMi (S) =
maxk{nk(SLi

)}+ maxk{nk(SRi
)}

n(S)
. (12)

Obviously the following equality is true

∆gMi (S)−∆gMj (S) = gMi (S)− gMj (S). (13)

The truncated accuracy gain (12) can be further simplified.
The term maxk{nk(SLi

)} denotes the number of elements
reaching the ’left’ leaf and belonging to the majority class in
this leaf, if the split was made with respect to the i-th attribute.
Observe that the simplest method of assigning a class to an
unlabeled data element is to assign to it the majority class of
the leaf. Therefore, the term maxk{nk(SLi)} is the number
of correctly classified data elements of set S, which would be
sorted down to the ’left’ leaf. The same applies to the ’right’
leaf. Hence the sum in the nominator of expression (12) is
the total number of correctly classified data elements of set S,
if the split was made with respect to the i-th attribute. As a
result, function (12) is the accuracy obtained for elements of
set S, if the split was made with respect to the i-th attribute.
Hence, the choice of the attribute which maximizes the value
of function (12) guarantees the maximum gain of the accuracy
of the tree. Let sj , j = 1, . . . , n(S), denote the elements of
the set S. Let us define a function Pi(s) which is equal to 1
if the element s would be correctly classified (after splitting
the considered node with respect to the i-th attribute) and 0
otherwise. It is obvious that Pi(s) is a random variable from
the binomial distribution with some unknown expected value
µi and variance µi(1−µi). Now function (12) can be expressed
in the following way

gMi (S) =

∑n(S)
j=1 Pi(sj)

n(S)
. (14)

Obviously, values of function (14) tend to µi as the size of
the set S tends to infinity.

The accuracy gain (11) can be used to construct the splitting
criterion for decision tree. Since the truncated accuracy gain
(12) can be expressed as a sum of random variables (14), the
Hoeffding inequality can be applied to derive an appropriate
bound. Below the Hoeffding’s theorem is recalled. In this
paper the Hoeffding’s inequality (see [32]) is cited as lemma
1.

Lemma 1. Let Xi, i = 1, . . . , n, be independent random
variables which satisfy Pr(Xi ∈ [ai; bi]) = 1, and let
Ri = bi − ai. Then the following inequality holds
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Pr

(∑n
i=1Xi

n
− E

[∑n
i=1Xi

n

]
> ε

)
≤ (15)

exp

(
− 2n2ε2∑n

i=1(Ri)2

)
= δ.

Now a theorem concerning the comparison of accuracy gain
values for two different attributes can be introduced.

Theorem 1 (The Hoeffding’s inequality for split measure
called the accuracy gain (11) based on the misclassification
error (3)). Let S be the set of data elements (independent
random variables) and let ∆gMi (S) denote the accuracy gain
for set S and for the i-th attribute. If the following condition
is satisfied

∆gMi (S)−∆gMj (S) >

√
2 ln (1/δ)

n(S)
, (16)

then with probability at least (1− δ) the following inequality
also holds

E
[
∆gMi (S)

]
> E

[
∆gMj (S)

]
. (17)

Proof: Since truncated accuracy gain values gMi (S) and
gMj (S) are expressed as a sum of random variables (14), the
Hoeffding’s inequality can be applied to them

P
(
gMi (S)− gMj (S)− (E

[
gMi (S)

]
− E

[
gMj (S))

]
< ε
)

< exp

(
−2n2(S)ε2∑n(S)

p=1 (Rp)2

)
= δ. (18)

where in this case Rp = 2, p = 1, . . . , n(S). Hence inequality
(18) can be expressed as follows

P (gMi (S)− gMj (S)− (E
[
gMi (S)

]
−
[
gMj (S))

]
< ε) <

exp
(
−n(S)ε2

2

)
= δ. (19)

From inequality (19) the following statement can be derived:
If

gMi (S)− gMj (S) > ε =

√
2 ln (1/δ)

n(S)
, (20)

then, with probability at least 1 − δ the following inequality
is true

E
[
gMi (S)

]
− E

[
gMj (S)

]
> 0, . (21)

According to (13), assumption (16) enforces inequality (20)
to be true. According to (13) inequality (21) is equivalent to
conclusion (17) of Theorem 1.

Theorem 1 can be used to determine, with probability at
least 1− δ, whether the relation between accuracy gain values
of two attributes, the i-th and the j-th, calculated from data
sample S is the same as the relation between their expected
values. This theorem can be also used to determine whether
the attribute with the highest value of accuracy gain calculated

from data sample S provides the highest expectation value.
This fact can be used to construct a type-I splitting criterion
for decision trees.

Corollary 1 (Type-I splitting criterion based on misclassifi-
cation error). Let imax and imax2 denote the indices of the
attributes with the highest and the second highest, respectively,
values of accuracy gain calculated from data sample. If:

∆gMimax
(S)−∆gMimax2

(S) >

√
2 ln (1/δ)

n(S)
, (22)

then, according to Theorem 1, with probability at least
(1− δ)D−1 also the following statement holds

imax = arg max
i∈{1,...,D}

{E
[
∆gMi (S)

]
} (23)

and the imax-th attribute can be chosen to split the considered
node.

B. Gini index

Analogously to the accuracy gain (11) one can define the
split measure function based on the Gini index (2), called the
Gini gain. It is a difference between the value of Gini index
for set S and the weighted average of Gini index values for
sets SLi and SRi

∆gGi (S) = gG(S)− n(SLi
)

n(S)
gG(SLi

)− n(SRi
)

n(S)
gG(SRi

).

(24)
Combining (2) with (24) one obtains

∆gGi (S) = gG(S)− 1 + (25)

1

n(S)

K∑
k=1

[(
nk(SLi)

)2
n(SLi)

+

(
nk(SRi)

)2
n(SRi)

]
.

Neglecting the term gG(S) − 1, the truncated Gini gain can
be obtained

gGi (S) =
1

n(S)

K∑
k=1

[(
nk(SLi

)
)2

n(SLi
)

+

(
nk(SRi

)
)2

n(SRi
)

]
. (26)

Analogously to (13) the difference between Gini gain values
and the difference between truncated Gini gain for two at-
tributes obey the following equality

∆gGi (S)−∆gGi (S) = gGi (S)− gGi (S). (27)

In a way similar to the previous subsection the splitting
criterion for decision tree based on the Gini index can be
proposed. However, the truncated Gini gain (26) cannot be
expressed as a sum of random variables. Therefore the Hoeffd-
ing’s inequality cannot be applied to it. More general statistical
tool is required, i.e. the McDiarmid’s inequality which will be
recalled below. The McDiarmid’s inequality (see [33]) is cited
here as lemma 2.
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Lemma 2. Let X1, . . . , Xn be independent random variables
and let f : A1 × · · · × An → R be a function satisfying the
following conditions

sup
x1,...,xn,x̂i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x̂i, . . . , xn)| (28)

≤ ci, i = 1, . . . , n.

Then the following inequality holds

Pr (f(Xi, . . . , Xn)− E [f(Xi, . . . , Xn)] > ε) (29)

≤ exp

(
− 2ε2∑n

i=1(ci)2

)
= δ.

Now a theorem concerning the comparison of Gini gain
values for two different attributes can be introduced.

Theorem 2 (The McDiarmid’s bound for split measure called
Gini gain (25) based on the Gini index (2)). Let S be the
set of data elements (independent random variables) and let
∆gGi (S) be the Gini gain value for set S and for the i-th
attribute. If the following condition is satisfied

∆gGi (S)−∆gGj (S) >

√
8 ln (1/δ)

n(S)
, (30)

then, with probability at least 1 − δ, the following inequality
holds

E
[
∆gGi (S)

]
> E

[
∆gGj (S)

]
. (31)

Proof: The proof is similar to the one presented in
[19] or [22]. The set S consists of n(S) data elements
s1, . . . , sn(S). Let us denote by Ŝh the set of data elements
s1, . . . , ŝh, . . . , sn(S), i.e. sets S and Ŝh differ only in the
h-th data element. First of all the bound for the difference
gGi (S)−gGi (Ŝh) will be established. The component quantities
used to compute the truncated Gini gain are n(SLi

), n(SRi
),

nk(SLi
), nk(SRi

), k = 1, . . . ,K. There are mainly two
possible cases when replacing data element sh in set S by
data element ŝh in set Ŝh

i) n(Ŝh,Li
) = n(SLi

)− 1,
n(Ŝh,Ri) = n(SRi) + 1,
np(Ŝh,Li) = np(SLi)− 1,
nq(Ŝh,Ri

) = nq(SRi
) + 1,

nk(Ŝh,Li
) = nk(SLi

) k 6= p,
nk(Ŝh,Ri) = nk(SRi) k 6= q.

ii) n(Ŝh,Li) = n(SLi),
n(Ŝh,Ri

) = n(SRi
),

np(Ŝh,Li
) = np(SLi

)− 1,
nq(Ŝh,Li

) = nq(SLi
) + 1,

nk(Ŝh,Li) = nk(SLi) k 6= p, q,
nk(Ŝh,Ri

) = nk(SRi
) k ∈ {1, . . . ,K}.

There are two more cases obtained after exchanging Li and Ri
with each other in above equalities. However, they obviously
provide the same final results as the cases presented above.
Simple but tedious algebra leads to the following

sup
s1,...,sn(S),ŝh

|gGi (S)− gGi (Ŝh)| ≤ 2

n(S)
. (32)

From (32) the following inequality can be derived

sup
s1,...,sn(S),ŝh

|gGi (S)− gGj (S)− (gGi (Ŝh)− gGj (Ŝh))| ≤ 4

n(S)
.

(33)
Therefore, the assumption (28) of the McDiarmid’s theorem is
satisfied for difference gGi (S) − gGj (S) with ch = 4

n(S) , h =

1, . . . , n(S). Then, according to the McDiarmid’s theorem, the
following inequality holds

Pr
(
gGi (S)− gGj (S)− E

[
gGi (S)− gGj (S)

]
> ε
)

(34)

≤ exp

(
n(S)ε2

8

)
= δ.

From inequality (34) the following statement can be derived:
If

gGi (S)− gGj (S) > ε =

√
8 ln (1/δ)

n(S)
, (35)

then, with probability at least 1 − δ, the following inequality
is true

E
[
gGi (S)

]
− E

[
gGi (S)

]
> 0. (36)

According to (27) inequality (35) is equivalent to assumption
(30) of Theorem 2. According to (27) inequality (36) leads to
conclusion (31) of Theorem 2.

Theorem 2 determines the bound which should be satisfied
to predict, with probability at least 1 − δ, the proper relation
between expected values E

[
∆gGi (S)

]
and E

[
∆gGj (S)

]
. This

theorem 2 can be furthermore used to determine whether the
attribute with the highest value of Gini gain calculated from
data sample S provides also the highest expected value. This
fact can be used to establish a splitting criterion for decision
trees.

Corollary 2 (Type-I splitting criterion based on Gini index).
Let imax and imax2 denote the indices of attributes with the
highest and the second highest, respectively, values of Gini
gain calculated from data sample. If:

∆gGimax
(S)−∆gGimax2

(S) >

√
8 ln (1/δ)

n(S)
, (37)

then, according to Theorem 2, with probability at least
(1− δ)D−1 also the following statement holds

imax = arg max
i∈{1,...,D}

{E
[
∆gGi (S)

]
} (38)

and the imax-th attribute can be chosen to split the considered
node.

Theorem 2 concerns the relation between expected values
E
[
∆gGi (S)

]
and E

[
∆gGj (S)

]
. However, this relation doesn’t
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give a correct answer about the relation between the values
of Gini gain for the whole data stream, i.e. when the number
of data elements in S is infinite. In this case the information
about the bias is required. In [21] the authors estimated the
bias of truncated Gini gain gGi (S)

|E
[
gGi (S)

]
− gGi | ≤

4√
n(S)

, (39)

where gGi is the value of truncated Gini gain obtained for the
whole infinite data stream. According to (27) and (39) the bias
of difference between Gini gain values is given by

|E
[
∆gGi (S)−∆gGj (S)

]
−
(
∆gGi −∆gGj

)
| ≤ 8√

n(S)
. (40)

Theorem 2 together with inequality (40) can be used to
determine whether the attribute with the highest value of
accuracy gain calculated from data sample S provides the
highest value of Gini gain calculated for the whole infinite
data stream. This fact can be used to construct a splitting
criterion for decision trees.

Corollary 3 (Type-II splitting criterion based on Gini index).
Let imax and imax2 denote the indices of attributes with the
highest and the second highest, respectively, values of Gini
gain calculated from data sample. If:

∆gGimax
(S)−∆gGimax2

(S) >

√
8 ln (1/δ)

n(S)
+

8√
n(S)

, (41)

then, according to Theorem 2 and inequality (40), with prob-
ability at least (1− δ)D−1 also the following statement holds

imax = arg max
i∈{1,...,D}

{∆gGi } (42)

and the imax-th attribute can be chosen to split the considered
node.

C. Hybrid splitting criteria

The splitting criteria proposed in subsections II-A and II-B
are complementary in some sense. These criteria will be
referred as single splitting criteria as opposed to the hybrid
criteria proposed in this subsection. As it will be pointed
out in the experimental section of this paper, decision tree
with splitting criterion based on the misclassification error
provides the fast growth of the tree at the beginning stages
of its development. Then, for large number of data elements
n(S), it remains stable at some unsatisfactory level. On the
other hand the decision tree based on the Gini index grows
slowly at the beginning. The size of the tree is correlated
with its classification accuracy. The accuracy increases
as the new data elements from the stream are processed
and for some large enough number n(S) the classification
accuracy of the tree with Gini index starts to exceed the
accuracy obtained for the tree based on misclassification
error. The splitting criteria proposed in previous subsections
can be merged together into hybrid criteria, which reveal

advantages of both components. Two hybrid splitting criteria
are presented below: the first one joining inequalities (22)
and (37) and the second one joining inequalities (22) and (41).

Corollary 4 (Type-(I + I) hybrid splitting criterion based
on Gini index and misclassification error). Let iG,max and
iG,max2 denote the indices of attributes with the highest and
the second highest, respectively, values of Gini gain calculated
from data sample. If:

∆gGiG,max
(S)−∆gGiG,max2

(S) >

√
8 ln (1/δ)

n(S)
, (43)

then, according to Theorem 2, with probability at least
(1− δ)D−1, also the following statement holds

iG,max = arg max
i∈{1,...,D}

{E
[
∆gGi (S)

]
} (44)

and the iG,max-th attribute can be chosen to split the consid-
ered node. If the split was not made, then another condition
is additionally checked. Let iM,max and iM,max2 denote the
indices of attributes with the highest and the second highest,
respectively, values of accuracy gain calculated from data
sample. If:

∆gMiM,max
(S)−∆gMiM,max2

(S) >

√
2 ln (1/δ)

n(S)
, (45)

then, according to Theorem 1, with probability at least
(1− δ)D−1, also the following statement holds

iM,max = arg max
i∈{1,...,D}

{E
[
∆gMi (S)

]
} (46)

and the iM,max-th attribute can be chosen to split the consid-
ered node.

Corollary 5 (Type-(II + I) hybrid splitting criterion based
on Gini index and misclassification error). Let iG,max and
iG,max2 denote the indices of attributes with the highest and
the second highest, respectively, values of Gini gain calculated
from data sample. If:

∆gGiG,max
(S)−∆gGiG,max2

(S) >

√
8 ln (1/δ)

n(S)
+

8√
n(S)

,

(47)
then, according to Theorem 2 and inequality (40), with prob-
ability at least (1− δ)D−1, also the following statement holds

iG,max = arg max
i∈{1,...,D}

{∆gGi } (48)

and the iG,max-th attribute can be chosen to split the consid-
ered node. If the split was not made, then another condition
is additionally checked. Let iM,max and iM,max2 denote the
indices of attributes with the highest and the second highest,
respectively, values of accuracy gain calculated from data
sample. If:
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Fig. 2. Block diagram of the ODT algorithm with standard (single) splitting
critera.

∆gMiM,max
(S)−∆gMiM,max2

(S) >

√
2 ln (1/δ)

n(S)
, (49)

then, according to Theorem 1, with probability at least
(1− δ)D−1, also the following statement holds

iM,max = arg max
i∈{1,...,D}

{E
[
∆gMi (S)

]
} (50)

and the iM,max-th attribute can be chosen to split the consid-
ered node.

III. A GENERAL FORM OF THE ONLINE DECISION TREE
ALGORITHM

All the algorithms considered in this paper are based on
the idea of the Hoeffding Tree algorithm presented in [18].
Since the Hoeffding’s inequality is not the only statistical tool
used to derive splitting criteria in this work (the McDiarmid’s
inequality is used as well), the name ’Hoeffding’s tree’ will
be replaced simply by the ’Online Decision Tree (ODT)’
further in the text. The only difference between all versions
of the algorithm considered in this paper lies in the applied
splitting criterion. The block scheme of the ODT algorithm
with standard single splitting criteria, like (22), (41) or (37),
is summarized in Fig. 2.

Let nkij(S) denote the number of data elements (in set S)
from the k-th class, with the j-th value of the i-th attribute.
The set of numbers nkij(S), i = 1, . . . , D, j = 1, . . . , vi, k =

1, . . . ,K is also called the sufficient statistics of set S. The
algorithm starts with one single node - the root. The sufficient
statistics in the root are all set to zero. Then, the tree is
developed using subsequent data elements from the stream.
Each data element s is sorted down the tree, according to the
values of attributes and the current structure of the tree. An
element s finally reaches a leaf Lp. The sufficient statistics in
leaf Lp are updated. Let Sp denote the set of data elements
collected so far in the leaf Lp, ji,s denote the value of the i-th
attribute of data element s and ks denote the class of element
s. The update of sufficient statistics is made in the following
manner

∀i∈{1,...,D} nksiji,s(Sp) = nksiji,s(Sp) + 1. (51)

Next, values of the applied split measure function ∆gi(Sp)
are calculated for each attribute, i = 1, . . . , D. Obviously, if
the accuracy gain is used as a split measure, then ∆gi(Sp) ≡
∆gMi (Sp). In the case of Gini gain ∆gi(Sp) ≡ ∆gGi (Sp).
Attributes with the highest (the imax-th) and the second
highest (the imax2-th) values of split measure are chosen.
Then, the splitting criterion is checked. The form of the bound
ε corresponds to the applied splitting criterion. Depending on
the impurity measure it can be type-I criterion (22) if the
misclassification error is used or type-I criterion (37) or type-
II criterion (41) in the case of Gini index. If the result of
the test is positive, the leaf Lp becomes a node and is split
into two children nodes (leaves). The sufficient statistics in
both children nodes are initially set to zero. Then the whole
procedure is performed for the next data element taken from
the stream.

The algorithm has a slightly different form if hybrid splitting
criteria are used. Corresponding block scheme is presented in
Fig. 3. In this case both split measures should be calculated for
each attribute, i.e. ∆gGi (Sp) and ∆gMi (Sp). For each of the
two split measures attributes with the highest and the second
highest values are chosen, i.e. iG,max and iG,max2 for Gini
index and iM,max and iM,max2 for misclassification error,
respectively. Then, the first part of hybrid splitting criterion
is checked (denoted as ’Hybrid criterion, p.1’ in Fig. 3). This
part operates on the values of Gini gain. Type-I criterion (37)
or type-II criterion (41) can be used. If the criterion is met,
the leaf Lp is split into child nodes with respect to the iG,max-
th attribute. Otherwise, the second part of hybrid splitting
criterion is checked (denoted as ’Hybrid criterion, p.2’ in Fig.
3). It is type-I criterion (22), i.e. the values of accuracy gain
are compared. If it is satisfied, then the considered leaf is split
with respect to the iM,max-th attribute.

IV. SIMULATION RESULTS

In this section the performance of the ODT with proposed
splitting criteria is discussed. Although this paper is mainly
of theoretical importance, it is worth considering how the
replacement of the splitting criterion proposed in [18] by new
splitting criteria proposed in this work affects the classification
accuracy of the decision tree. All simulations were conducted
using our software implemented in C# language and it is
available at www.iisi.pcz.pl/~pduda. For convenience some
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Fig. 3. Block diagram of the ODT algorithm with hybrid splitting critera.

abbreviations for ODTs with various splitting criteria will be
now introduced:

• ODTm - Online Decision Tree based on the misclassifi-
cation error with type-I splitting criterion (22);

• ODTG1 - Online Decision Tree based on the Gini index
with type-I splitting criterion (37);

• ODTG2 - Online Decision Tree based on the Gini index
with type-II splitting criterion (41);

• ODTEnt1 - Online Decision Tree based on the informa-
tion entropy with type-I splitting criterion created using
bound (9);

• ODTEnt2 - Online Decision Tree based on the informa-

tion entropy with type-II splitting criterion created using
bound (8);

• ODTh1 - Online Decision Tree based on the Gini index
and the misclassification error with type-(I + I) hybrid
splitting criterion merging (37) and (22);

• ODTh2 - Online Decision Tree based on the Gini index
and the misclassification error with type-(II + I) hybrid
splitting criterion merging (41) and (22);

• HDT - Online Decision Tree based on the Gini index with
splitting criterion proposed in [18] (originally called the
Hoeffding’s Decision Tree);

• 1/2HDT - Online Decision Tree based on the Gini index
with splitting criterion containing the bound ε equal to
the half of the value of the bound obtained in [18], i.e.
ε = 0.5

√
R2 ln(1/δ)

2n(S) , where R = 1 for Gini index.

A. Data preparation

In this paper synthetic data were used to investigate the
performance of the considered methods. Data were generated
on a basis of synthetic decision trees. These synthetic trees
were constructed in the same way as described in [18]. At
each level of the tree, after the first dmin levels, each node
is replaced by a leaf with probability ω. The higher value
of parameter ω implicates the lower complexity of the tree.
The maximum depth of the synthetic tree is dmax (at this
level all nodes are replaced by leaves). After the structure of
the whole tree is obtained, splitting attributes are randomly
assigned to the nodes. At each path from the root to any leaf
the assigned attributes must not repeat. To each leaf a class is
randomly assigned. Different synthetic trees represent different
data concepts. The data concept is a particular distribution of
attributes values and classes. In brief, it determines the correla-
tions between the attributes and classes. For the purpose of the
simulations eight synthetic trees were generated (all of them
with D = 30 binary attributes, dmin = 3 and dmax = 18).
Four different values of ω were considered: 0.1, 0.15, 0.2
and 0.25. For each of these values two synthetic trees were
generated. These eight synthetic trees provide eight different
data concepts. For each concept a testing dataset consisting
of 100000 elements was generated using the corresponding
synthetic tree. Hence there are eight testing datasets, one for
each data concept. Each testing dataset is used to evaluate
the accuracy of the corresponding decision tree at every stage
of its development. In the simulations presented below, for
any training dataset size n and any value of parameter δ one
obtains eight different decision trees and, as a result, eight
values of classification accuracy (one for each synthetic data
concept). The final result of accuracy for particular n and δ is
calculated as the arithmetic average over all eight values.

B. Single splitting criteria

In this subsection the ODTm, ODTG1 and ODTG2 are
compared. First, the dependence between the classification
accuracy and parameter δ is investigated. The experiment
was carried out for two different sizes of training dataset:
n(S) = 106 and n(S) = 108. Five different values of δ were
used, i.e. 0.00001, 0.0001, 0.001, 0.01 and 0.1. The obtained
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TABLE I
THE MEAN AVERAGE AND STANDARD DEVIATION VALUES OF ONLINE

DECISION TREES ACCURACY OBTAINED USING THREE SINGLE SPLITTING
CRITERIA FOR VARIOUS VALUES OF δ AND n = 106 DATA ELEMENTS.

ODTG1 ODTG2 ODTm
δ mean std. dev. mean std. dev. mean std. dev.

0.00001 0.666 0.033 0.622 0.033 0.718 0.014
0.0001 0.666 0.033 0.622 0.033 0.718 0.014
0.001 0.670 0.033 0.637 0.035 0.721 0.014
0.01 0.672 0.032 0.651 0.031 0.722 0.014
0.1 0.722 0.023 0.656 0.034 0.724 0.013

TABLE II
THE MEAN AVERAGE AND STANDARD DEVIATION VALUES OF ONLINE

DECISION TREES ACCURACY OBTAINED USING THREE SINGLE SPLITTING
CRITERIA FOR VARIOUS VALUES OF δ AND n = 108 DATA ELEMENTS.

ODTG1 ODTG2 ODTm
δ mean std. dev. mean std. dev. mean std. dev.

0.00001 0.794 0.021 0.765 0.027 0.725 0.013
0.0001 0.796 0.021 0.767 0.026 0.725 0.013
0.001 0.799 0.021 0.769 0.026 0.725 0.013
0.01 0.808 0.022 0.777 0.024 0.725 0.013
0.1 0.824 0.021 0.781 0.023 0.725 0.013

average accuracies with standard deviations are depicted in
Tab. I and II, respectively.

It can be seen that for both considered values of n(S) the
accuracy of each decision tree is nearly constant for δ in the
range [0.00001; 0.1]. A slightly different (higher) accuracies
in several cases were obtained for δ = 0.1. It seems that the
considered decision trees are insensitive on the value of δ if
it is taken from the mentioned interval. Therefore, for further
analysis only two values of δ are considered: 0.001 and 0.1.
Although the comparison of accuracies of decision trees with
various splitting criteria will be conducted comprehensively
in next experiment for a wide range of possible numbers of
processed data elements, one can perform an initial analysis
of this issue based on Tables I and II. As can be seen,
for n(S) = 106 the ODTm provides better accuracy for
all considered values of δ. The differences were significant,
what was confirmed by the Friedman’s test on the level
of significance 1%. Additionally Conover post-hoc test for
pairwise comparisons demonstrated that the results obtained
by the ODTm vary significantly from the results of the other
algorithms. However, when n(S) = 108 data elements is
taken into account, then decision trees with Gini index used
as a split measure dominate. Similarly to the previous case,
the significance difference between values was indicated by
the Friedman’s test and the post-hoc analysis confirm the
advantage of the ODTG1 algorithm.

The comparison of accuracy dependence on the number of
data elements for various decision trees is presented in Fig 4
and 5, respectively. Additionally to decision trees with pre-
viously considered splitting criteria, the ODTEnt1 is included
into the analysis. The ODTEnt2 is not taken into account since
it provides almost the same result as the ODTEnt1.

The decision tree with the misclassification error used as an
impurity measure provides higher accuracy at the beginning
stages of the tree induction. However, after around n(S) =
106 data elements processed, the accuracy does not increase

Fig. 4. Dependence between the average accuracy and number of training
data elements for the ODTs with various single splitting criteria for δ = 0.1.

Fig. 5. Dependence between the average accuracy and number of training data
elements for the ODTs with various single splitting criteria for δ = 0.001.

significantly. On the other hand decision trees with Gini index
start to increase the accuracy later and for large number of
data elements they outperform the ODTm. Among the two
decision trees with splitting criteria based on the Gini index the
ODTG1 provides higher accuracy than the ODTG2. The plots
corresponding to the ODTG2 have nearly identical shape as the
plots for the ODTG1, however, they are moved to the ’right’,
i.e. to the higher values of n(S). This means that the ODTG2
induces, in majority of cases, the same trees as the ODTG1
does, however, each split in the ODTG2 occurs later, i.e. after
processing more data elements. It is understandable since both
decision trees use the same impurity measure and the splitting
criterion for the ODTG2 requires more data elements to make
a decision about the split. The decision tree with information
entropy used as an impurity measure occurs the worst in this
comparison. Hence it will not be taken into account in further
experiments.

C. Hybrid splitting criteria

Figures 4 and 5 clearly illustrate the reason why it is
worth considering the fusion of splitting criteria based on
misclassification error and Gini index into one hybrid splitting
criterion. Each component criterion demonstrates its positives
at different stages of tree development. One can expect that
the hybrid splitting criterion reveals the advantages of both
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Fig. 6. Dependence between the average accuracy and number of training
data elements for the ODTs with various single and hybrid splitting criteria
for δ = 0.1.

Fig. 7. Dependence between the average accuracy and number of training
data elements for the ODTs with various single and hybrid splitting criteria
for δ = 0.001.

components. To prove this claim, the decision trees with
hybrid splitting criteria were compared with decision trees
investigated in previous subsection. The results for δ = 0.1 and
δ = 0.001 are depicted in Fig. 6 and 7, respectively. Indeed,
the ODTh1 demonstrates higher classification accuracy than
both the ODTG1 and the ODTm for any number of data
elements n(S). Analogously, the same is true when comparing
the ODTh2 with the ODTG2 and the ODTm. The accuracy
results presented in Fig. 6 and 7 are obtained as an arithmetic
average over the eight data concepts. In Fig. 8 the situation for
four single data concepts is presented for values of ω, used to
construct the corresponding synthetic tree, equal to 0.1, 0.15,
0.2 and 0.25. The parameter δ was set to 0.001. As in the
case of average accuracy, in all four presented data concepts
the accuracy of decision tree with hybrid splitting criterion
outperforms the accuracy of decision trees with corresponding
single criteria. The ODTh1 provides higher accuracy than the
ODTh2. It is understandable since the ODTG1 outperforms the
ODTG2, as it was demonstrated in the previous subsection.
Looking for the reason why the decision trees with hybrid
splitting criteria classify better than their counterparts with
single criteria it is worth investigating how the number of
leaves in decision tree grows as the number of processed data
elements increases. This is visualized in Fig. 9. Comparing the

Fig. 8. Accuracies in the function of training dataset size for the ODTs
with various single and hybrid splitting criteria for four data concepts with
ω = 0.1, 0.15, 0.2, 0.25 and for δ = 0.001.
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Fig. 9. Number of leaves in the function of training dataset size for the ODTs
with various single and hybrid splitting criteria for four data concepts with
ω = 0.1, 0.15, 0.2, 0.25 and for δ = 0.001.

corresponding plots for Fig. 8 and 9 it is easily seen that there
exists a strong correlation between the classification accuracy
of decision tree and the number of its leaves. The ODTs with
hybrid splitting criteria provide many more splits than trees
with single splitting criteria and for this reason they achieve
higher classification accuracies. It should be noted that larger
size of induced decision tree requires more memory to store
it. It may be an important fact to take into account in data
stream mining scenario. If there is not enough memory in the
computing device it may occur that only a part of decision
tree with hybrid splitting criterion may be induced. If on the
other hand the same amount of memory would be enough to
store the decision tree with a single splitting criterion it might
occur that in such a case, for example, the ODTG1 would
provide higher accuracy than the ODTh1. Nevertheless, if the
amount of memory is enough for both trees, then the decision
tree with a hybrid splitting criterion outperforms the tree with
a single criterion.

D. Performance on real data sets

In this subsection two real data sets were analyzed, taken
from the UCI machine learning repository [34]. The two
chosen datasets consists of relatively large number of data
elements, hence they can imitate the data stream. One of the
considered datasets is the ’KDD CUP 99’ with 4898431 data
elements. Data are described by 41 attributes, 7 of which are
nominal and 34 are numerical. Each data element belongs to
one of the two classes - ‘network attack’ and ‘normal network
connection’. The data distribution in this set is skewed: the
‘network attack’ class constitutes about 80% of the whole
dataset. The data set was divided into two equinumerous parts,
first one used for learning and the second one for testing. Such
procedure was performed four times, providing in total four
training datasets and their complementary testing datasets. The
accuracy evaluation was performed before every split of the
node which occurred in the considered tree. The accuracy for
one particular number of data elements is calculated as the
average over four datasets described above. The second real
set of data used in the following simulations is the ‘Covertype’
dataset, consisting of 581012 data elements. Data are char-
acterized by 10 numerical and 44 nominal attributes. Each
data element belongs to one of seven classes, representing
forest cover type designation. The testing datasets were taken
randomly from the training dataset in the same way as for
the set ‘KDD CUP 99’. For each dataset the simulations were
conducted for two different values of parameter δ: 0.001 and
0.1. Results are presented in Fig. 10 and 11 for the ‘KDD CUP
99’ dataset and in Fig. 12 and 13 for the ‘Covertype’ dataset.
For both used datasets it turned out that in the case of decision
tree with hybrid splitting criterion, i.e. the ODTh1, no splits
were made based on the Gini gain split measure. Hence, the
results obtained for the ODTm and for the ODTh1 overlap.

E. Comparison with Hoeffding Decision Trees

Although, as it was previously stated, the HDT is a heuristic
data mining tool with mathematically unjustified splitting
criterion, it is worth comparing it with decision trees proposed
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Fig. 10. Dependence between the average accuracy and the number of training
data elements obtained for decision trees ODTG1, ODTm and ODTh1 with
δ = 0.001 for the ‘KDD CUP 99’ dataset.

Fig. 11. Dependence between the average accuracy and the number of training
data elements obtained for decision trees ODTG1, ODTm and ODTh1 with
δ = 0.1 for the ‘KDD CUP 99’ dataset.

Fig. 12. Dependence between the average accuracy and the number of training
data elements obtained for decision trees ODTG1, ODTm and ODTh1 with
δ = 0.001 for the ‘Covertype’ dataset.

Fig. 13. Dependence between the average accuracy and the number of training
data elements obtained for decision trees ODTG1, ODTm and ODTh1 with
δ = 0.1 for the ‘Covertype’ dataset.

Fig. 14. Dependence between the average accuracy and the number of training
data elements for the ODTG1, the ODTh1, the HDT and the 1/2HDT for
δ = 0.001.

in this paper. Since the ODTG1 outperforms the ODTG2
and the ODTh1 outperforms the ODTh2, only the ODTG1
and the ODTh1 will be taken into account in the following
comparison. Additionally, the 1/2HDT is analyzed. The av-
erage accuracy results in the function of training dataset size
obtained for δ = 0.001 are presented in Fig. 14. The ODTh1 is
only slightly less accurate than the popular HDT. The highest
average accuracy is provided by the 1/2HDT. The reason is
that the value of bound in splitting criterion for the 1/2HDT
is twice lower than the bound corresponding to the HDT. This
means that the 1/2HDT requires four times less data elements
in order to make a decision about the split than it is needed
in the case of the HDT. The 1/2HDT grows faster and, as it
was previously stated, it is correlated with higher accuracy.

V. CONCLUSIONS

The main aim of this paper was to provide a better under-
standing of the process of decision trees induction in data
stream scenario, particularly focusing on the mathematical
foundations of splitting criteria in decision tree nodes. The two
types of splitting criteria were distinguished. Type-I splitting
criteria ensure that the splitting attribute chosen based on
it provides, with high probability (1 − δ)D−1, the highest
expected value of the split measure. Type-II splitting criteria
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ensure that the chosen attribute is the same as it would
be if the whole data stream was available. In this paper
new single splitting criteria were proposed, i.e. the type-I
splitting criteria based on the misclassification error and the
Gini index and the type-II splitting criterion based on the
Gini index. Additionally, two hybrid splitting criteria were
proposed. These criteria merge the type-I criterion based on
the misclassification error with one of the criteria based on
the Gini index. Finally, the type-(I + I) and the type-(II + I)
hybrid criteria were obtained. The Online Decision Trees
(ODT) with various splitting criteria were compared in the
experimental simulations. The hybrid splitting criteria ensure
higher classification accuracies than their single counterparts.
Additionally, the proposed decision trees were compared with
the Hoeffding Decision Tree as well as with decision tree with
splitting criterion for which the bound is equal to the half
of bound used in the Hoeffding tree. The last one provided
the highest accuracy among all decision trees considered in
this paper. We encourage researchers dealing with stream data
mining to perform simulations with other values of constant
C in formula (5).
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