
The CART Decision Tree for Mining Data Streams

Leszek Rutkowskia,b, Maciej Jaworskia, Lena Pietruczuka, Piotr Dudaa

aInstitute of Computational Intelligence, Czestochowa University of Technology, ul.
Armii Krajowej 36, 42-200 Czestochowa, Poland

bInformation Technology Institute, Academy of Management, 90-113 Lódź, Poland

Abstract

One of the most popular tools for mining data streams are decision trees.
In this paper we propose a new algorithm, which is based on the commonly
known CART algorithm. The most important task in constructing decision
trees for data streams is to determine the best attribute to make a split in the
considered node. To solve this problem we apply the Gaussian approxima-
tion. The presented algorithm allows to obtain high accuracy of classification,
with a short processing time. The main result of this paper is the theorem
showing that the best attribute computed in considered node according to
the available data sample is the same, with some high probability, as the
attribute derived from the whole data stream.

Keywords: Data steam, decision trees, CART, Gini index, Gaussian
approximation

1. Introduction

Among the plenty of techniques and methods used in machine learning
or data mining, the classification seems to be one of the most important
[14, 21, 31, 35]. Let Ai denotes the set of possible values of attribute ai,
for i = 1, . . . , D. The aim of the classification task is to find a classifier
h : A1 × . . . × AD → {1, . . . , K} based on the training dataset S ⊂ A1 ×
. . .×AD×{1, . . . , K}. The dataset S consists of n elements sm = (vm, km) =
([v1m, . . . , v

D
m], km), m = 1, . . . , n, where

Email addresses: leszek.rutkowski@iisi.pcz.pl (Leszek Rutkowski),
maciej.jaworski@iisi.pcz.pl (Maciej Jaworski), lena.pietruczuk@iisi.pcz.pl
(Lena Pietruczuk), piotr.duda@iisi.pcz.pl (Piotr Duda)

Preprint submitted to Information Science August 28, 2013

• vim ∈ Ai is the value of attribute ai for data element sm,

• km ∈ {1, . . . , K} is a class of data element sm.

The classifier h is used to assign a class k ∈ {1, . . . , K} to unlabeled data
elements v ∈ A1 × . . . × AD. For static datasets a variety of classification
methods have been proposed in literature. The most popular are neural
networks [29, 30], k-nearest neighbors [4] or decision trees [3, 26, 27], which
are within the scope of this paper. The decision tree is a structure composed
of nodes and branches. Terminal nodes are called leaves. To each node Lq,
which is not a leaf, an appropriate splitting attribute ai is assigned. The
assignment of the attribute to the considered node is the crucial part of the
decision tree construction algorithm. Usually the choice of the attribute is
based on some impurity measure, calculated for the corresponding subset Sq

of the training dataset S. The impurity measure is used to calculate the split
measure function for each attribute. According to the chosen attribute, the
node is split into children nodes, which are connected with their parent nodes
by branches. There exist two types of decision trees: binary and non-binary.
In the case of non-binary tree, the node is split into as many children as the
number of elements of set Ai. Each branch is labeled by a single value of
attribute ai. If the tree is binary, the node is split into two children nodes.
The branches are labeled by some complementary subsets of Ai. According
to the branches, the set Sq is partitioned into subsets, which then become the
training subsets in the corresponding children nodes. Leaves serve to label
unclassified data elements.

The existing algorithms for decision trees construction differ mainly in
the two fields mentioned above: type of tree (binary or non-binary) and type
of impurity measure. The ID3 algorithm [26], for example, produces non-
binary trees. As the impurity measure the information entropy is applied.
The split measure function, based on it, is called the information gain. An
upgraded version of the ID3 algorithm, also based on the information entropy,
is the C4.5 algorithm [27]. In this algorithm an additional function, called
the split information, is proposed. It takes high values for attributes with
large domains. As the split measure function in the C4.5 algorithm, the
ratio of the information gain and the split information is used. In the CART
algorithm [3] binary trees are constructed. The impurity measure is in the
form of Gini index.

The algorithms mentioned above (ID3, C4.5 and CART) are designed for
static datasets. They cannot be applied directly to data streams [1, 2, 7, 11,

2

12, 13, 24], which are of infinite size. Moreover, in case of data streams data
elements income to the system continuously with very high rates. Addition-
ally, the concept drift may occur [8, 10, 17, 20, 22, 34], which means that the
concept of data evolve in time. In the literature there are various approaches
to deal with data streams. In recent decade an appropriate tool to solve data
streams problems is incremental learning [6, 15, 25]. Among few characteri-
zations of incremental learning presented in the literature we cite [15] stating
that ’incremental learning should be capable of learning a new information
and retaining the previously acquired knowledge, without having access to
the previously seen data’. It is easily seen that the approach based on the
decision trees possesses main features of the incremental learning.

In this paper we present a method to adapt the CART algorithm to deal
with data streams. The main problem is to determine the best attribute
in each node. Since it is not possible to compute the values of split mea-
sure based on infinite dataset, they should be estimated using the sample of
data in considered node. Then, with some probability, one can say whether
the best attribute according to this sample is also the best with respect to
the whole stream. In the literature there are few approaches to solve this
problem:

a) The commonly known algorithm called ‘Hoeffding’s Tree’ was intro-
duced by P. Domingos and G. Hulten in [5]. The main mathematical
tool used in this algorithm was the Hoeffding’s bound [16] in the form:

Theorem 1. If X1, X2, . . . , Xn are independent random variables and
ai ≤ Xi ≤ bi (i = 1, 2, . . . , n), then for ϵ > 0

P{X − E[X] ≥ ϵ} ≤ e−2n2ϵ2/
∑n

i=1(bi−ai)
2

(1)

where X = 1
n

∑n
i=1Xi and E[X] is expected value of X.

For ai = a and bi = b, (i = 1, 2, . . . , n) it states that after n observations
the true mean of the random variable of range R = b−a does not differ
from the estimated mean by more than

ϵH =

√
R2 ln 1/α

2n
(2)

3

with probability 1− α. However, we would like to emphasize that the
Hoeffding’s bound is wrong tool to solve the problem of choosing the
best attribute to make a split in the node. This observation follows
from the fact that the split measures, like information gain and Gini
index, can not be presented as a sum of elements and they are using
only frequency of elements. Moreover, Theorem 1 is applicable only
for numerical data. Therefore the idea presented in [5] violates the
assumptions of Theorem 1 and the concept of Hoeffding Trees has no
theoretical justification.

b) In [33] the authors proposed new method in which they used the Mc-
Diarmid’s inequality [23] instead of Hoeffding’s bound as a tool for
choosing the best attribute to make a split. First the function f(S)
was proposed as a difference between the values of Gini indices of two
attributes

f(S) = Giniax(S)−Giniay(S). (3)

By applying the McDiarmid’s inequality authors obtained the value of

ϵM = 8

√
ln(1/α)

2n
, (4)

such that for any fixed α, if f(S) > ϵM , then with probability 1 − α
attribute ax is better to make a split than attribute ay.

c) In [18] the authors proposed a method, based on the Multivariate
Delta Method, for determining if the best attribute calculated from
the data sample in considered node is also the best according to the
whole stream. Even though the idea was valuable, the authors omitted
the issue of calculating some of the necessary parameters what is not
trivial. Therefore, the method does not have any practical application.

d) In [32] the authors presented the Gaussian Decision Tree (GDT) algo-
rithm, which is based on the idea presented in [5]. The GDT algorithm
was developed on the basis of the ID3 algorithm. Unfortunately, the
GDT algorithm can be applied only for the two-class problem.

In this paper we propose a new algorithm, called CART for data stream
(dsCART), inspired by [5]. The novelty is summarized as follows:

4

i. Following the idea of [18] we propose a new method to determine
the best attribute to split the considered node. Contrary to [18], our
method has a practical meaning and can be applied in a combination
with many developed so far data stream mining algorithms, e.g. the
Concept-adapting Very Fast Decision Trees (CVFDT) [17] or Hoeffd-
ing Option Trees (HOT) [24]. Our approach is based on the Taylor’s
Theorem and the properties of the normal distribution [19, 28].

ii. We prove the theorem (see Section 3) showing that the best attribute
calculated from a finite data sample in the considered node is also the
best according to the whole stream.

iii. We derive a formula (see section 3) allowing to determine a minimal
number of data stream elements such that the tree node can be divided
with respect to a considered attribute.

iv. We prove that for the two-class problem the number of elements n in a
node, needed to determine if the split should be made, is smaller in the
dsCART algorithm than in the McDiarmid Tree algorithm, with the
same level of confidence 1−α. This is shown in section 5 and confirmed
in experimental section.

v. The dsCART algorithm developed in this paper does not require any
prepruning operations and is applicable for any number of classes, con-
trary to the GDT algorithm.

vi. Through computer simulations we show performance of our algorithm
including a superiority of the dsCART over the GDT algorithm if com-
putational time is taken into account.

The results of the paper are applicable to both categorical and numerical
data, in the latter case we should properly choose a split point and generate
a binary tree. This is commonly used procedure to deal with numerical
data in decision trees. Moreover, it should be emphasized that our main
result (Theorem 1 in section 3) is applicable to solve problems with concept
drift. More specifically, our result should replace the Hoeffding’s bound used
incorrectly in algorithms like the Concept-adapting Very Fast Decision Trees
(CVFDT) [17] or Hoeffding Option Trees (HOT) [24, 5] . We stress that the
idea of the CVFDT and HOT algorithms is correct, however authors of both
algorithms incorrectly used the Hoeffding’s bound in their papers. Our result

5

can be combined with those algorithms, replacing the Hoeffding’s bound by
formulas (23) and (24).

The rest of the paper is organized as follows. In section 2 the CART
algorithm is recalled. The main result of this paper is described in section 3.
In section 4 the dsCART algorithm is introduced. In Section 5 the dsCART
algorithm and the McDT algorithm are compared. Experimental results are
shown in section 6 and conclusions are drawn in section 7.

2. The CART algorithm

Now we will briefly describe the CART algorithm. The introduced nota-
tion will be useful in the rest of the paper. The CART algorithm starts with
a single node L0 - the root. During the learning process, in each created node
Lq a particular subset Sq of the training dataset S is processed (for the root
S0 = S). If all elements of set Sq are of the same class, the node is tagged as
a leaf and the split is not made. Otherwise, according to the split measure
function, the best attribute to split is chosen among the available attributes
in considered node. For each available attribute ai, the set of attribute values
Ai is partitioned into two disjoint subsets Ai

L and Ai
R (Ai = Ai

L ∪ Ai
R). The

choice of Ai
L automatically determines the complementary subset Ai

R, there-
fore the partition is represented further only by Ai

L. The set of all possible
partitions of set Ai is denoted by Vi. Subsets A

i
L and Ai

R divide the dataset
Sq into two disjoint subsets: left Lq(A

i
L) and right Rq(A

i
L)

Lq(A
i
L) = {sj ∈ Sq|vij ∈ Ai

L}, (5)

Rq(A
i
L) = {sj ∈ Sq|vij ∈ Ai

R}. (6)

Sets Lq(A
i
L) and Rq(A

i
L) depend on the chosen attribute and partition of its

values. Let pL,q(A
i
L) (pR,q(A

i
L)) denote the fraction of data elements from Sq,

which belong to the subset Lq(A
i
L) (Rq(A

i
L)). Since the fractions pL,q(A

i
L)

and pR,q(A
i
L) are dependent

pR,q(A
i
L) = 1− pL,q(A

i
L), (7)

only one of these parameters is needed to be considered, e.g. pL,q(A
i
L).

The fraction of elements from Lq(A
i
L) (Rq(A

i
L)), from class k, is denoted

by pkL,q(A
i
L) (pkR,q(A

i
L)). The fraction of all data elements Sq in considered

node Lq, from class k, is denoted by pk,q. Note that pk,q, k = 1, . . . , K, are

6

not dependent on chosen attribute ai and partition Ai
L. As it was mentioned

previously, the impurity measure used in the CART algorithm is the Gini
index. For any subset Sq of training dataset it is given by

Gini(Sq) = 1−
K∑
k=1

(pk,q)
2. (8)

It is easily seen that the Gini index reaches its minimum (zero) when all cases
fall into a single target category, and maximum is obtained when records are
equally distributed among all classes. Furthermore, the weighted Gini index
of subset Sq, resulting from the choice of partition Ai

L, is defined as follows

wGini(Sq, A
i
L) = pL,q(A

i
L)Gini(Lq(A

i
L)) + (1− pL,q(A

i
L))Gini(Rq(A

i
L)),(9)

where Gini indices of sets Lq(A
i
L) and Rq(A

i
L) are given analogously as in

(8)

Gini(Lq(A
i
L)) = 1−

K∑
k=1

(pkL,q(A
i
L))

2, (10)

Gini(Rq(A
i
L)) = 1−

K∑
k=1

(pkR,q(A
i
L))

2. (11)

A split measure function in the CART algorithm is defined as a difference
between Gini index (8) and the weighted Gini index (9). Analogously to the
information gain used in the ID3 algorithm, this split measure function is
called Gini gain. It is dependent on the chosen partition Ai

L of attribute ai

g(Sq, A
i
L) = Gini(Sq)− wGini(Sq, A

i
L). (12)

Among all the possible partitions Ai
L of set Ai, the one which maximizes the

value of Gini gain is chosen

Ãi
L,q = arg max

Ai
L∈Vi

{g(Sq, A
i
L)}. (13)

The partition Ãi
L,q is called the optimal partition of set Ai for the subset Sq

of training dataset. This optimal partition generates subsets Li
q ≡ Li

q(Ã
i
L,q)

and Ri
q ≡ Ri

q(Ã
i
L,q). The value of giq = g(Sq, Ã

i
L,q) is called the Gini gain of

7

subset Sq for attribute a
i. Among all the available attributes in the node Lq,

the one with the highest value of Gini gain is chosen. The node Lq is split
into two children nodes Llast+1 and Llast+2, where last is the index of the
node created lately in the whole tree. Let us assume that the highest value
of Gini gain is obtained for attribute ax. Then all the calculations described
above are performed in node Llast+1, using the subset Slast+1 = Lx

q , and in
node Llast+2, using the subset Slast+2 = Rx

q . The list of available attributes
in nodes Llast+1 and Llast+2 is taken from the node Lq, with the exception
of the attribute ax. The considered node Lq is not split if either the list of
available attributes in the node contains only one element or all the elements
from the subset Sq are from the same class.

3. Main Results

In section 2 all the fractions, e.g. pL(A
i
L), were computed based on the

whole data set. In this section our discussion will concern a data stream
problem. Since data streams are of infinite size, it is impossible to compute
the fractions as in the CART algorithm. They can be only estimated based
on available sample of data.

Now, we consider a situation in one particular node. Therefore, in all
notations introduced before we omit Sq for clarity. Similarly to formula (7),
the following dependencies are true

pKL(A
i
L) = 1−

K−1∑
j=1

pjL(A
i
L), (14)

pKR(A
i
L) = 1−

K−1∑
j=1

pjR(A
i
L). (15)

Therefore we consider further only 2(K − 1) out of 2K parameters pjL(A
i
L)

and pjR(A
i
L), j ∈ {1, . . . , K − 1}.

Moreover, fractions pk (k ∈ {1, . . . , K}) are dependent as well

pK = 1−
K−1∑
j=1

pj. (16)

8

Therefore, only K−1 of them, i.e pj, j ∈ {1, . . . , K−1}, are important. Note
that the fraction pj does not depend on a chosen attribute ai and partition
Ai

L ∪ Ai
R, and it can be expressed using pL(A

i
L), pjL(A

i
L) and pjR(A

i
L) as

follows

pj(pL, pjL, pjR) = pL(A
i
L)pjL(A

i
L) + (1− pL(A

i
L))pjR(A

i
L). (17)

For any dataset X, consisting of elements belonging to one of K classes,
its Gini index can be calculated using the following formula

Gini(P1, . . . , PK−1) = 1−
K∑
j=1

P 2
j = 1−

K−1∑
j=1

P 2
j −

(
1−

K−1∑
j=1

Pj

)2

, (18)

where Pj is a fraction of elements from the set X, belonging to the j-th class.
Therefore, the Gini indices (8), (10) and (11) can be expressed as functions of
K−1 variables, i.e. Gini(p1, . . . , pK−1) for (8), Gini(p1L(A

i
L), . . . , p(K−1)L(A

i
L))

for (10) and Gini(p1R(A
i
L), . . . , p(K−1)R(A

i
L)) for (11), respectively.

The Gini gain function is a function of parameters mentioned above, i.e.

g(pL, p1L, . . . , p(K−1)L, p1R, . . . , p(K−1)R) = Gini(p1, . . . , pK−1)

−pLGini(p1L, . . . , p(K−1)L)− (1− pL)Gini(p1R, . . . , p(K−1)R). (19)

The optimal partition of set Ai is defined analogously as in formula (13)

Ãi
L = arg max

Ai
L∈Vi

{g((pL(Ai
L), p1L(A

i
L), . . . , p(K−1)L(A

i
L), p1R(A

i
L), . . . , p(K−1)R(A

i
L)}.(20)

We introduce the following notation for fractions associated with the optimal
partition

[
piL, p

i
1L, . . . , , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R

]
=

=
[
pL(Ã

i
L), p1L(Ã

i
L), . . . , p(K−1)L(Ã

i
L), p1R(Ã

i
L), . . . , p1R(Ã

i
L)
]

(21)

The value of gi = g(piL, p
i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) is called the Gini

gain for attribute ai. Parameters piL, p
i
1L, . . . , p

i
(K−1)L and pi1R, . . . , p

i
(K−1)R are

9

estimators of piL, p
i
1L, . . . , p

i
(K−1)L and pi1R, . . . , p

i
(K−1)R, respectively. They

can be treated as arithmetic means of some random variables from bino-
mial distributions. Let us consider the data elements sm from data set S,
m ∈ {1, ..., n}. We define the random variable ζ i,mL , which is equal to 1 if
sm ∈ Li and 0 otherwise. Variable ζ i,mL is from the binomial distribution

with mean µi
L = piL and variance (σi

L)
2
= piL(1 − piL). Similarly we define

ζ i,mkL , k ∈ {1, . . . , K−1} (for elements lm from the set Li, m ∈ {1, ..., ni
L}) and

ζ i,mkR , k ∈ {1, . . . , K − 1} (for elements rm from the set Ri, m ∈ {1, ..., ni
R})

random variables, from the binomial distributions with means µi
kL = pikL and

µi
kR = pikR and variances (σi

kL)
2
= pikL(1 − pikL) and (σi

kR)
2
= pikR(1 − pikR),

respectively. Variable ζ i,mkL is equal to 1 if lm is from the k-th class and ζ i,mkR

equals 1 if rm is from the k-th class.

The main result of this paper is the following theorem stating that if
the difference between the Gini gain estimates obtained for two attributes
is greater than a specific value, given by (24), then with a fixed probabil-
ity there is, roughly speaking, a statistical difference between the true Gini
gains. This allows either to determine, from a recent fragment of data, the
best attribute to split on or to say that the information to determine the
split is statistically insufficient.

For convenience, let us denote

gi = g(piL, p
i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) (22)

Theorem 2. Let us consider two attributes ax and ay, for which we have
calculated the values of the Gini gain function. If the difference of these
values satisfies the following condition

gx − gy > ϵG,K , (23)

where

ϵG,K = z(1−α)

√
2Q(K)√

n
, (24)

z(1−α) is the (1 − α)-th quantile of the standard normal distribution N(0, 1)
and

10

Q(K) = 5K2 − 8K + 4, (25)

then gx is greater than gy with probability 1− α.

Proof: see Appendix A.

Remark 1

If ax and ay are attributes with the highest values of Gini gain, then ax

can be chosen to split the considered leaf node, with the level of confidence
(1− α).

Example 1

Let us assume that there are n = 10000 data elements in the considered
tree node. The number of classes K = 3. According to formula (25) we have
Q(K) = 25. Let ax and ay be the attributes with the highest values of Gini
gain function. For convenience, let us denote

gx,y = g(pxL, p
x
1L, p

x
2L, p

x
3L, p

x
1R, p

x
2R, p

x
3R)− g(pyL, p

y
1L, p

y
2L, p

y
3L, p

y
1R, p

y
2R, p

y
3R).(26)

Let us assume, that the value of gx,y is equal to 0.1161. If the level of
confidence is set to 1− α = 0.95, then z(1−α) = 1.644854 and we have

z(1−α)

√
2Q(K)√

n
= 0.11631. (27)

Therefore, inequality (23) is not satisfied and we can not say that the at-
tribute ax is better than ay. Let us assume now, that new 100 data elements
arrived to the considered tree node. The total number of elements n in this
node equals 10100. Let us assume that the new value of gx,y is 0.116. For
the current value of n we have

z(1−α)

√
2Q(K)√

n
= 0.11573. (28)

This time inequality (23) is satisfied. Therefore, with the 0.95 level of con-
fidence we are allowed to say that attribute ax is better than attribute ay.
The considered tree node is divided with respect to attribute ax.

11

Example 2

Inequality (23) can be transformed as follows

n >
2Q(K)

(
z(1−α)

)2
(gx,y)2

, (29)

where gx,y is defined as in (26). The above inequality is an alternative way
for determining whether to split the considered node or not. If the current
number of elements satisfies inequality (29), the node is divided with respect
to attribute ax. Let us assume that gx,y = 0.116. The values of z(1−α) =
1.644854 and Q(K) = 25 are the same as in Example 1. Then the term on
the right side of inequality (29) equals

2Q(K)
(
z(1−α)

)2
(gx,y)2

= 10053.3. (30)

Therefore, if n is greater or equal to 10054 elements, the tree node is divided
with respect to attribute ax.

4. The dsCART Algorithm

Theorem 2 allows us to propose an algorithm called CART for data
streams (dsCART). This algorithm is a modification of the Very Fast De-
cision Tree algorithm proposed in [5]. Following the idea of the authors we
introduce the tie breaking mechanism. It forces the split of the considered
node after some fixed number of elements, even though the best and the sec-
ond best attributes do not satisfy condition (23). Without this mechanism,
splitting of the node can be blocked permanently if the two best attributes
provide comparable values of Gini gain. The number of elements to force the
split is the same in all nodes and depends on the tie breaking parameter θ.

For clarity of the pseudocode the following notation will be introduced:

• giq is the Gini gain computed for the attribute ai in the leaf Lq.

• nk
i,λ,q is a number of elements from the k-th class in the leaf Lq, for

which the value of attribute ai is equal to aiλ, (a
i
λ ∈ Ai).

• nk
q is a number of elements from the k-th class in the leaf Lq.

12

Algorithm 1: The dsCART

Inputs: S is a sequence of examples,
A is a set of discrete attributes, of the one class
α is one minus the desired probability of choosing the correct

attribute at any given node,
θ is the tie breaking parameter.

Output: dsCART is a decision tree.

Procedure dsCART(S,A, α)
Let dsCART be a tree with a single leaf L0 (the root).
Let A0 = A
For each attribute ai ∈ A

For each value aiλ of attribute ai

For each class k
nk
i,λ,0 = 0

For each example s in S
Sort s into a leaf Lq using the current tree.
For each attribute ai ∈ Aq

For each value aiλ of attribute ai

For each class k
If value of example s for attribute ai is equal to aiλ and s is
from the k-th class then

Increment nk
i,λ,q.

Label Lq with the majority class among the examples seen so far at Lq.
If the examples seen so far at Lq are not of the same class, then

For each attribute ai ∈ Al

For each partition of the set Ai into Ai
L, A

i
R

Compute gq(A
i
L) using the counts nk

i,λ,q.

giq = max
Ai

L∈Vi

{gq(Ai
L)}

ax = arg max
ai∈Aq

{giq}

ay = arg max
ai∈Aq\{ay}

{giq}

Compute ϵG,K using formula (24)

If (gxq − gyq > ϵG,K) or (ϵG,K < θ), then
Replace Lq by an internal node that splits on ax.

13

Figure 1: Ratio of ϵG,K to ϵM for K = 2 and K = 3.

For both branches of the split
Add a new leaf Llast+1 and let Alast+1 = Aq\{ax} at Llast+1.
For each attribute ai ∈ Alast+1

For each value aiλ of ai

For each class k
nk
i,λ,last+1 = 0.

last = last+ 1
Return dsCART .

5. Comparison with McDiarmid’s bound result

The main difference between the dsCART and the McDT algorithms lies
in the method of computing the bound for the difference between the true
mean of random variables and the estimate value. The obtained bounds are
ϵG,K and ϵM , given by (24) and (4), respectively.

For α ∈ (0; 0.5) the following condition is true for all n > 0 (see Fig. 1)

ϵG,2 < ϵM , (31)

ϵG,K > ϵM , K > 2.

This means that, in the two-class problem, the dsCART algorithm needs
less data elements to make a split than the McDT algorithm. Figure 1 shows

14

ratio of ϵG,K to ϵM for two-class and tree-class problem. One can see that
when α → 0 then ϵG,2 → ϵM . If α → 0.5 then ratio of ϵG,2 to ϵM tends to 0.

Example 3

Let us assume that ax and ay are attributes with the highest values of
Gini gain. We want to use the McDiarmid’s bound to determine if the value
of Gini gain for ax is higher then Gini gain for ay with (1 − α) level of
confidence. Then, the difference gx,y (defined by (26)) should satisfy the
following inequality (see [33])

gx,y > 8

√
ln(1/α)√
2n

. (32)

The above inequality can be transformed to the form

n > 32
ln(1/α)

(gx,y)2
. (33)

Hence, if the number of samples n satisfies inequality (33), the considered
node in the tree is split with respect to the attribute ax. Let us assume that
gx,y = 0.224 and the level of confidence 1− α = 0.95. Then the term on the
right side of inequality (33) equals 1910.544.

Therefore, if the number of data elements n is greater or equal to 1911, the
node is split. To compare the McDiarmid’s bound with the method presented
in this paper we have to know the number of classes K. We will consider
two cases: first with K = 2 and second with K = 3. For K = 2, according
to inequality (29), the required number n of elements in the node must be
greater or equal to 863. In the second case (K = 3) n has to be greater or
equal to 2697. Obtained results are consistent with those presented in Fig.
1.

6. Experimental results

6.1. Synthetic data

In this section the performance of the proposed method is examined and
compared with the McDiarmid Tree [33] and the Gaussian Decision Tree
[32] algorithms. Synthetic data were used, generated on a basis of synthetic
decision trees. These synthetic trees were constructed in the same way as

15

described in [5]. At each level of the tree, after the first dmin levels, each
node is replaced by a leaf with probability ω. To the rest of nodes a split-
ting attribute is randomly assigned; it has to be an attribute which has not
already occurred in the path from the root to the considered node. The
maximum depth of the synthetic tree is dmax (at this level all nodes are re-
placed by leaves). After the whole tree is constructed, to each leave a class is
randomly assigned. Each synthetic tree represents a different data concept.
Data concept is a particular distribution of attributes values and classes. In
this work twelve synthetic trees were generated (all of them with ω = 0.15,
dmin = 3 and dmax = 18) giving twelve different data concepts. Trees were
generated with D = 30 binary attributes and K = 2 classes. Data elements
for each synthetic tree are obtained in the following manner. The value of
each attribute is chosen randomly, with equal probability for each possible
value. Then the data element is sorted into a leaf using the synthetic tree,
according to the values of attributes. The class assigned to this leaf is as-
signed to the considered data element. The accuracy of the decision tree
is calculated every time a new leaf is generated based on new data set of
2000 elements. These testing sets are created the same way as training data
set. In the following simulations, for any set of dsCART parameters (α, n),
algorithm was run twelve times, once for each synthetic data concept. The
final result was obtained as the average over all runs.

The first experiment examines the dependence between the accuracy of
the algorithm and the size of the built tree. Data generated by various
synthetic trees produced classification trees having different complexities.
The number of leaves in the least complex tree was equal to 2971, therefore
the accuracy is compared in the interval [0, 2971]. The size of dataset was
n = 109, the value of parameter α was set to 10−5 and the value of parameter
θ was 0.05. As it was expected the accuracy increases with the growth of the
number of leaves (see Fig. 2). Therefore it is important to determine the
best attribute to make a split using as few data as possible.

In the second experiment we compare the accuracy of the dsCART al-
gorithm, the GDT algorithm and the McDT algorithm. For this simulation
the value of parameter θ was set to 0.05 and the value of parameter α was
10−7. The experiment was performed on different number of training data
elements, from n = 104 to n = 109. As we can see in Fig. 3, the accuracy
of these algorithms differs very little. We also calculated the corresponding
values of standard deviation, which for clarity are collected in table 1.

16

Figure 2: The dependence between the accuracy of the dsCART algorithm and the number
of leaves (black line - mean value obtained for twelve trees, gray line - mean value ±
standard deviation (sd)).

Figure 3: The dependence between the number of training data and the accuracy of the
dsCART, the Gaussian Decision Tree and the McDiarmid Tree algorithms.

Table 1: Standard deviation of accuracy for different number of elements N and various
classifiers.

N 104 105 106 107 108 109

dsCART 5,377 5,94 7,016 5,629 3,805 2,321
GDT 5,069 5,587 6,92 3,787 3,661 2,449
McDT 5,571 5,125 5,931 5,061 3,845 2,519

17

According to these values one can say that the three algorithms (McDT,
GDT and dsCART) demonstrate comparable accuracies. This result comes
from the fact that all three algorithms are based on the same mechanism
of tree construction. Hence the corresponding nodes are split with respect
to the same attribute with probability 1 − α. Therefore, with very high
probability all three algorithms produce the same decision trees on a given
data stream. The difference is only in the rate of splitting the nodes. For
considered algorithms the accuracy is increasing with growing number of
training data elements. For n = 109 the obtained accuracy was greater than
90%.

Figure 4: The dependence of the accuracies of the dsCART and the McDiarmid Tree
algorithms on the number of elements obtained for 8 various concepts.

The third experiment was performed to compare the accuracy of dsCART

18

Figure 5: The dependence between the accuracy of the dsCART algorithm and the level
of noise.

algorithm with McDiarmid Tree algorithm. The value of parameters α and
θ was set to 0.1 and 0 respectively. In Fig. 4 we can see the results obtained
for 8 various concepts. It shows that dsCART algorithm needs fewer data
elements to make a split than McDiarmid Tree algorithm for every concept.
The trees obtained by both algorithms are similar, therefore the final accu-
racy tends to the same value. The main advantage of dsCART is that a split
is made based on fewer data elements what is especially important in some
special cases. Particularly to deal with concept drift we can limit the max-
imal number of data elements considered in the tree (like in CVFDT [17]).
Since the dsCART algorithm creates more complex trees than McDiarmid
Tree algorithm, the former should provide higher accuracy. The most impor-
tant split is generally a split of the root because it ensures the highest gain
of accuracy. As one can see in Fig. 4 the dsCart algorithm always performed
this first split faster than McDiarmid Tree algorithm.

In the next experiment we examined noisy data. The following mechanism
was used to create the noisy data. Every time the data were generated, the
value of each attribute and the class was changed with the probability φ to
any possible value with the same probability. The value of φ vary from 0%
to 50%. In Figure 5 we can see that with the growth of the value of noise
the accuracy decreases. However, in the investigated range the accuracy
decreases not more than 12%.

Figure 6 shows the difference between the processing time of the GDT
algorithm and the dsCART algorithm according to the size of training dataset
n. As we can see the dsCART algorithm is much faster than the GDT

19

Figure 6: The difference of the processing time of the Gauss Decision Tree algorithm and
the dsCART algorithm depending on the size of training dataset n.

algorithm. For n = 104 the difference was equal to 0.16s and for n = 109 it
increased up to 6563s.

6.2. Real data

The performance of the dsCART algorithm was also examined on real
data. We decided to choose a dataset from the UCI repository [9]. Although
there is a variety of different datasets available in the repository, only several
of them can imitate a data stream for our purposes. The most suitable seems
to be the ’KDD CUP 99’ dataset, consisting of 4898431 data elements. Data
are described by 41 attributes, 7 of which are nominal and 34 are numerical.
To adapt the node splitting procedure to the numerical attributes we applied
the standard method of dividing the range of the attribute into bins. In the
experiment we set the number of bins to 20 for all numerical attributes.
Each data element belongs to one of the five classes. Classes represent four
types of network attacks (’dos’, ’u2r’, ’r2l’ and ’probe’) and the fifth class is
reserved for ’normal’ network connections (without attack). We performed
two simulations: first for the original five-class problem, and the second for
the two-class problem, in which all four types of network attacks are merged
into one class labeled as ’attack’. The whole dataset was divided randomly
into two parts: the training set, consisting of 4896431 elements, and the
testing set, consisting of 2000 elements. The parameter α was set to 0.00001
and the tie breaking mechanism was turned off (θ = 0). Obtained results are
presented in Fig. 7.

As we can see we had to deal with very specific data. The fractions of

20

Figure 7: The fraction of the most frequent class and the obtained accuracy of the classifier,
for two-class problem (K = 2) and five-class problem (K = 5).

the most frequent class were equal to 0.801 for K = 2 and 0.799 for K = 5.
It shows that the dataset is strongly unbalanced. However, the obtained
accuracies (99.1% for K = 2 and 98.6% for K = 5) seem to be satisfactory.

7. Conclusions

In this paper we discussed the problem of creating a decision tree for
data stream classification. We propose a new method of deciding, if the best
attribute to split the considered node obtained according to a finite data
sample is also the best attribute for the whole data stream. We propose
a modification of the CART algorithm called the dsCART algorithm. To
show the mathematical foundations of this algorithm we use the properties
of the normal distribution and the Taylor’s Theorem. In the experimental
results we show that this new algorithm is accurate and fast at the same
time. Therefore we proved that it is proper tool for solving the problem of
data stream classification.

Acknowledgments

This paper was prepared under project operated within the Foundation
for Polish Science Team Programme co-financed by the EU European Re-

21

gional Development Fund, Operational Program Innovative Economy 2007-
2013, and also supported by National Science Center NCN.

The authors would like to thank the reviewers for helpful comments.

Appendix A.

In order to simplify a description, the following notations are introduced:

gi = g(µi
L, µ

i
1L, . . . , µ

i
(K−1)L, µ

i
1R, . . . , µ

i
(K−1)R), (A.1)

(
τ iL
)2

=

(
∂g

∂pL

)2 (
σi
L

)2
, (A.2)

(
τ ijL
)2

=

(
∂g

∂pjL

)2 (
σi
jL

)2
, j ∈ {1, . . . , K − 1}, (A.3)

τ ijkL =
∂g

∂pjL

∂g

∂pkL
covijkL, j, k ∈ {1, . . . , K − 1}, k ̸= j, (A.4)

(
τ ijR
)2

=

(
∂g

∂pjR

)2 (
σi
jR

)2
, j ∈ {1, . . . , K − 1}, (A.5)

τ ijkR = ∂g
∂pjR

∂g
∂pkR

covijkR, j, k ∈ {1, . . . , K − 1}, k ̸= j. (A.6)

where covijkL = −pijLp
i
kL is the covariance of ζ i,mjL and ζ i,mkL , and covijkR =

−pijRp
i
kR is the covariance of ζ i,mjR and ζ i,mkR .

To prove the Theorem 1 we will introduce and prove the following lemma

Lemma 1.
If function g(pL, p1L, . . . , p(K−1)L, p1R, . . . , p(K−1)R) is given by formula (19),

then the value g(piL, p
i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) can be approximated

by the normal distribution

g(piL, p
i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) −→(A.7)

N
(
gi,

(τ iL)
2

n
+

K−1∑
j=1

(τ ijL)
2

ni
L

+
K−1∑
j=1

K−1∑
k=1,k ̸=j

τ ijkL
ni
L

+
K−1∑
j=1

(τ ijR)
2

ni
R

+
K−1∑
j=1

K−1∑
k=1,k ̸=j

τ ijkR
ni
R

)
,

22

Proof. Parameters piL, p
i
kL and pikR are estimated from the data sample in

considered leaf node as

piL =

∑n
m=1 ζ

i,m
L

n
, (A.8)

pikL =

∑ni
L

j=m ζ i,mkL

ni
L

, k ∈ {1, . . . , K − 1} (A.9)

pikR =

∑ni
R

j=m ζ i,mkR

ni
R

, k ∈ {1, . . . , K − 1} (A.10)

For big values of n, ni
L and ni

R distributions of piL, p
i
kL and pikR, according

to the Central Limit Theorem, can be approximated by appropriate normal
distributions

piL −→ N

(
µi
L,

(σi
L)

2

n

)
, (A.11)

pikL −→ N

(
µi
kL,

(σi
kL)

2

ni
L

)
, k ∈ {1, . . . , K − 1}, (A.12)

pikR −→ N

(
µi
kR,

(σi
kR)

2

ni
R

)
, k ∈ {1, . . . , K − 1}. (A.13)

For big values of n, ni
L and ni

R one can assume that the values of piL, p
i
kL

and pikR are very close to their expected values µi
L, µ

i
kL and µi

kR. Therefore
one can apply the Taylor’s Theorem for Gini gain in neighborhood of point
(piL, p

i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) = (µi

L, µ
i
1L, . . . , µ

i
(K−1)L, µ

i
1R, . . . , µ

i
1R),

which is given by formula (A.14).

g(piL, p
i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) ≈

g(µi
L, µ

i
1L, . . . , µ

i
(K−1)L, µ

i
1R, . . . , µ

i
(K−1)R)

+
∂g(µi

L,µ
i
1L,...,µ

i
(K−1)L

,µi
1R,...,µi

(K−1)R
)

∂pL
(piL − µi

L)

+
∑K−1

j=1

∂g(µi
L,µ

i
1L,...,µ

i
(K−1)L

,µi
1R,...,µi

(K−1)R
)

∂pjL
(pijL − µi

jL)

+
∑K−1

j=1

∂g(µi
L,µ

i
1L,...,µ

i
(K−1)L

,µi
1R,...,µi

(K−1)R
)

∂pjR
(pijR − µi

jR). (A.14)

23

Therefore, according to (A.11) - (A.14), the distribution of the random vari-

able g(piL, p
i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) can be approximated by (A.7).

This completes the proof.

Observing that ni
L = npL and ni

R = n(1 − pL), the variance of normal
distribution (A.7) can be further simplified as follows

(τ iL)
2

n
+
∑K−1

j=1

(τ ijL)
2

ni
L

+
∑K−1

j=1

∑K−1
k=1,k ̸=j

τ ijkL
ni
L

+∑K−1
j=1

(τ ijR)
2

ni
R

+
∑K−1

j=1

∑K−1
k=1,k ̸=j

τ ijkR
ni
R

=

(τ iL)
2
+
∑K−1

j=1

(τijL)
2

pi
L

+
∑K−1

j=1

∑K−1
k=1,k ̸=j

τijkL

pi
L

+
∑K−1

j=1

(τijR)
2

1−pi
L

+
∑K−1

j=1

∑K−1
k=1,k ̸=j

τijkR

1−pi
L

n

=
(τ i)

2

n
. (A.15)

Distribution (A.7) is then given by

g(piL, p
i
1L, . . . , p

i
(K−1)L, p

i
1R, . . . , p

i
(K−1)R) −→ N

(
gi,

(τ i)
2

n

)
. (A.16)

Now we will introduce the proof of the Theorem 1.

Proof. The difference of values gx ≡ g(pxL, p
x
1L, . . . , p

x
(K−1)L, p

x
1R, . . . , p

x
(K−1)R)

and gy ≡ g(pyL, p
y
1L, . . . , p

y
(K−1)L, p

y
1R, . . . , p

y
(K−1)R) has the normal distribution

gx − gy −→ N

(
gx − gy,

(τx)2 + (τ y)2

n

)
. (A.17)

We do not know the true value of the mean gx − gy. Properties of the
normal distribution [19] ensure that the following inequality is satisfied with
probability 1− α

gx − gy < ϵx,y(1−α) + (gx − gy), (A.18)

where

ϵx,y(1−α) = z(1−α)

√
(τx)2 + (τ y)2

√
n

. (A.19)

24

Obviously, inequality (A.18) is equivalent to the following one

gx − gy > (gx − gy)− ϵx,y(1−α). (A.20)

It means that the attribute ax is the better than ay according to the whole
stream, i.e.

gx − gy > 0, (A.21)

with probability 1− α, only if the following inequality is satisfied

ϵx,y(1−α) < gx − gy. (A.22)

Moreover, if we would show, that the ϵG,K given by (24) is the upper bound
of ϵx,y(1−α), i.e.

ϵx,y(1−α) < ϵG,K (A.23)

then the following condition is enough to satisfy inequality (A.21) with prob-
ability 1− α

gx − gy > ϵG,K . (A.24)

Then one can say that if inequality (A.24) is true, then gx > gy with proba-
bility 1− α. Now inequality (A.23) will be proved.

Partial derivatives of Gini index (18) are given by

∂Gini(P1, . . . , PK−1)

∂Pi

= −2Pi + 2

(
1−

K−1∑
i=1

Pj

)
= 2(PK − Pi). (A.25)

Observing that ∂pi
∂piL

= pL and ∂pi
∂piR

= (1− pL), we have

∂g

∂piL
= ∂Gini(p1,...,pK−1)

∂pi

∂pi
∂piL

− pL
∂Gini(p1L,...,p(K−1)L)

∂piL
(A.26)

= 2pL(pK − pi − pKL + piL) ≤ 4pL

and

25

∂g

∂piR
= ∂Gini(p1,...,pK−1)

∂pi

∂pi
∂piR

− (1− pL)
∂Gini(p1R,...,p(K−1)R)

∂piR
(A.27)

= 2(1− pL)(pK − pi − pKR + piR) ≤ 4(1− pL),

Those inequalities are satisfied for every attribute. Therefore, for any
chosen attribute ai, we obtain the following bounds:

(τ ijL)
2

piL
=

(
∂g

∂pijL

)2
pijL(1− pijL)

piL
≤ 16piL

1

4
= 4piL, (A.28)

(τ ijR)
2

piR
=

(
∂g

∂pijR

)2
pijR(1− pijR)

(1− piL)
≤ 16(1− piL)

1

4
= 4(1− piL), (A.29)

(τ ijkL)
2

piL
= −

∂g
∂pijL

∂g
∂pikL

pijLp
i
kL

piL
≤ 16piL

1

4
= 4piL, (A.30)

(τ ijkR)
2

piR
= −

∂g
∂pijR

∂g
∂pikR

pijRp
i
kR

(1− piL)
≤ 16(1− piL)

1

4
= 4(1− piL), (A.31)

Since that
∂pij
∂piL

= pijL − pijR, the derivative of g with respect to piL is given

by

∂g

∂piL
=

K−1∑
j=1

∂Gini

∂pij

∂pij
∂piL

−Gini(pi1L, . . . , p
i
(K−1)L) +Gini(pi1R, . . . , p

i
(K−1)R)

=
K−1∑
j=1

2(piK − pij)(p
i
jL − pijR)−Gini(pi1L, . . . , p

i
(K−1)L) +Gini(pi1R, . . . , p

i
(K−1)R)

≤ 2(K − 1)−Gini(pi1L, . . . , p
i
(K−1)L) +Gini(pi1R, . . . , p

i
(K−1)R). (A.32)

Since the Gini index takes values in the interval [0; 1), the following bound
is true

26

(τ iL)
2 =

(
∂g

∂piL

)2

piL(1− piL) ≤ (2(K − 1) + 1)2
1

4
< K2. (A.33)

Finally, according to bounds (A.28) - (A.31) and (A.33), the following
bound for (τ i)2 (defined in (A.15)) is satisfied

(τ i)2 ≤ K2 + (K − 1)4pL + (K − 1)(K − 2)4pL + (K − 1)4(1− pL)

+(K − 1)(K − 2)4(1− pL)

= K2 + 4(K − 1) + 4(K − 1)(K − 2) = 5K2 − 8K + 4 = Q(K).(A.34)

The inequality (A.34) holds for any attribute ai, in particular for ai = ax

and ai = ay. Therefore, back to formula (A.19), the pessimistic value of ϵx,y1−α

can be expressed in the form

ϵx,y1−α = z1−α

√
2Q(K)√

n
. (A.35)

Therefore, in general case ϵx,y1−α ≤ ϵG,K .

References

[1] C. Aggarwal, Data Streams. Models and Algorithms, Springer, LLC,
New York, 2007.

[2] A. Bifet, R. Kirkby, Data Stream Mining a Practical Approach, Tech-
nical Report, University of WAIKATO, 2009.

[3] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Re-
gression Trees, Chapman and Hall, New York, 1993.

[4] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans-
actions on Information Theory 13 (1967) 2127.

[5] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proc.
6th ACM SIGKDD Internat. Conf. on Knowledge Discovery and Data
Mining, pp. 71–80.

27

[6] S. Ertekin, L. Bottou, C.L. Giles, Nonconvex online support vector ma-
chines, IEEE Transactions on Pattern Analysis and Machine Intelligence
33 (2011) 368–381.

[7] W. Fan, Y. Huang, H. Wang, P. Yu, Active mining of data streams, in:
Proc. SDM.

[8] W. Fan, Y. Huang, P. Yu, Decision tree evolution using limited number
of labeled data items from drifting data streams, in: Proc. 4th IEEE
Internat. Conf. on Data Mining, pp. 379–382.

[9] A. Frank, A. Asuncion, UCI machine learning repository, 2010. URL:
http://archive.ics.uci.edu/ml.

[10] C. Franke, Adaptivity in Data Stream Mining, Ph.D. thesis, University
of California, DAVIS, 2009.

[11] M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: A
review, Sigmod Record 34 (2005) 18–26.

[12] J. Gamaa, R. Fernandes, R. Rocha, Decision trees for mining data
streams, Intelligent Data Analysis 10 (2006) 23–45.

[13] J. Gao, W. Fan, J. Hang, On appropriate assumptions to mine data
streams: Analysis and practice, in: 2007 IEEE International Conference
on Data Mining (ICDM’07), Omaha, NE.

[14] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Elsevier,
2006.

[15] H. He, S. Chen, K. Li, X. Xu, Incremental learning from stream data,
IEEE Transactions on Neural Networks (2011) 1901–1914.

[16] W. Hoeffding, Probability inequalities for sums of bounded random vari-
ables, Journal of the American Statistical Association 58 (1963) 13–30.

[17] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data
streams, in: Proc. 7th ACM SIGKDD Internat. Conf. on Knowledge
Discovery and Data Mining, KDD’01, pp. 97–106.

28

[18] R. Jin, G. Agrawal, Efficient decision tree construction on streaming
data, in: Proc. 9th ACM SIGKDD Internat. Conf. on Knowledge Dis-
covery and Data Mining, Washington, DC, USA, August 24-27, 2003.

[19] O. Kardaun, Classical Methods of Statistics, Springer, 2005.

[20] L.I. Kuncheva, Classifier ensembles for changing environments, in: Mul-
tiple Classifier Systems, Springer, 2004, pp. 1–15.

[21] D. Larose, Discovering Knowledge in Data. An Introduction to Data
Mining, Wiley & Sons, 2005.

[22] J. Liu, X. Li, W. Hong, Ambiguous decision trees for mining concept-
drifting data streams, Pattern Recognition Letters, Elsevier 30 (2009)
1347–1355.

[23] C. McDiarmid, On the method of bounded differences, On the method
of bounded differences, number 141 in Surveys in Combinatorics, Math.
Soc. Lecture, London, 1989, pp. 148–188.

[24] B. Pfahringer, G. Holmes, R. Kirkby, New options for Hoeffding trees,
in: M.A.Orgun, J. Thornton (Eds.), AI 2007, number 4830 in LNAI,
Springer, 2007, pp. 90–99.

[25] R. Polikar, L. Udpa, S. Udpa, V. Honavar, Learn++: An incremental
learning algorithm for supervised neural networks, IEEE Transactions
on System, Man and Cybernetics (C), Special Issue on Knowledge Man-
agement 31 (2001) 497–508.

[26] J. Quinlan, Learning efficient classification procedures and their applica-
tion to chess end games, Learning efficient classification procedures and
their application to chess end games, Morgan Kaufmann, San Francisco,
CA, 1983, pp. 463–482.

[27] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Francisco, CA, 1993.

[28] J. Rice, Mathematical Statistics and Data Analysis, Duxbury Press,
2007.

[29] R. Rojas, Neural Networks: A Systematic Introduction, Springer,
Berlin, 1996.

29

[30] L. Rutkowski, Adaptive probabilistic neural-networks for pattern classi-
fication in time-varying environment, IEEE Trans. Neural Networks 15
(2004) 811–827.

[31] L. Rutkowski, New Soft Computing Techniques for System Modeling,
Pattern Classification and Image Processing, Springer-Verlag, 2004.

[32] L. Rutkowski, L. Pietruczuk, P. Duda, M. Jaworski, Decision trees for
mining data streams based on the Gaussian approximation, IEEE Trans-
actions on Knowledge and Data Engineering PP (2013).

[33] L. Rutkowski, L. Pietruczuk, P. Duda, M. Jaworski, Decision trees for
mining data streams based on the McDiarmid’s bound, IEEE Transac-
tions on Knowledge and Data Engineering 25 (2013) 1272–1279.

[34] A. Tsymbal, The problem of concept drift: definitions and related
work, Technical Report TCD-CS-2004-15, Computer Science Depart-
ment, Trinity College Dublin, Ireland, 2004.

[35] I. Witten, E. Frank, G. Holmes, Data Mining: Practical Machine Learn-
ing Tools and Techniques, Morgan Kaufman, Amsterdam, Boston, 2005.

30

