# Laboratorium Podstaw sieci komputerowych

# Lab 1: Sieci współdzielone

## 1 Cel ćwiczenia

Celem ćwiczenia jest obserwacja działania współdzielonej sieci Ethernet w funkcji stacji za pomocą symulatora takiej sieci oraz badanie niektórych parametrów sieci.

## 2 Przebieg ćwiczenia

### 2.1 Stworzenie symulacji

### 2.1.1 Przygotowanie projektu

1. Uruchom program OPNET IT Guru Academic Edition.



Rysunek 1: Okno główne programu OPNET IT Guru

#### UWAGA!

W celu poprawnej pracy programu w systemach z ustawionym językiem polskim, należy zmienić Symbol dziesiętny na kropkę. Można to uczynić w Panelu Sterowania – Opcje regionalne i językowe – Dostosuj

- 2. Otwórz File  $\rightarrow$  New...
- 3. Wybierz opcję **Project** i kliknij **OK**.
- 4. Zmień nazwę projektu (**Project Name**) na Lab1\_siec\_wspoldzielona. Zmień nazwę scenariusza (Scenario Name) na male\_obciazenie. Spowoduje to urochomienie kreatora pozwalającego na ustawienie podstawowych właściwości projektu.
- 5. W oknie ustawień topologii początkowej (Initial topology), wybierz opcję Create Empty Scenario i kliknij przycisk Next.
- 6. W oknie Choose Network Scale wybierz opcję Office i kliknij przycisk Next.

| Do | ostosuj opcje regionalne             | <u>? ×</u>              |  |  |
|----|--------------------------------------|-------------------------|--|--|
|    | Liczby Waluta Godzina Data           |                         |  |  |
|    | Przykład<br>Dodatnie: 123 456 789.00 | Ujemne: -123 456 789.00 |  |  |
|    | Symbol <u>d</u> ziesiętny:           |                         |  |  |
|    | Liczba cyfr po symbolu dziesiętnym:  | 2                       |  |  |
|    | Symbol grupowania cyfr:              | <b>•</b>                |  |  |
|    | <u>G</u> rupowanie cyfr:             | 123 456 789             |  |  |
|    | S <u>ym</u> bol znaku minus:         | · •                     |  |  |
|    | Eormat liczb ujemnych:               | •1.1                    |  |  |
|    | Wyświetlanie zer wiodących:          | 0.7                     |  |  |
|    | Sep <u>a</u> rator listy:            | ;                       |  |  |
|    | Syst <u>e</u> m miar:                | Metryczne               |  |  |
|    |                                      |                         |  |  |
|    |                                      |                         |  |  |
|    | OK Anuluj Zastosuj                   |                         |  |  |

Rysunek 2: Okno ustawień regionalnych

- 7. W oknie **Specify Size** pozostaw domyślne wartości parametrów i kliknij przycisk **Next**
- 8. W oknie Select Technologies wybierz i dołącz dwie rodziny technologii: ethernet i links i kliknij przycisk Next
- 9. W oknie **Review** (przedstawionym na rys. 2), przedstawiającym podsumowywanie wybranych opcji, kliknij przycisk **OK** w celu zakończenia kreatora.

| 迷 Startup Wizard: Review 🛛 🕅                                                 |                                                    |                      |  |
|------------------------------------------------------------------------------|----------------------------------------------------|----------------------|--|
| Review the values you have chosen. Use the<br>'Back' button to make changes. | Scale<br>Size<br>Model Family<br>ethernet<br>links | Office 100 m × 100 m |  |
|                                                                              | Quit B                                             | ack <u>O</u> K       |  |

Rysunek 3: Okno podsumowywujące tworzony projekt

#### 2.1.2 Zbudowanie modelu sieci

Na początku stworzymy model sieci, w której stacje robocze połączone za pomocą koncentratora. W programie OPNET IT Guru sieć można zaprojektować ręcznie przeciągając z palety obiektów wymagane przez nas elementy sieci lub, tak jak w tym ćwiczeniu, za pomocą kreatora Rapid Configuration.

Aby to uczynić wykonaj następujące kroki:

- 1. Jeżeli otwarte jest okno **Object Palette** można je zamknąć (w tym ćwiczeniu nie będzie nam potrzebne).
- 2. Otwórz Topology  $\rightarrow$  Rapid Configuration. Z listy rozwijanej Configuration wybierz opcję Star i kliknij przycisk OK.
- 3. Na liście rozwijanej Center Node Model wybierz opcję ethernet16\_hub.
- 4. W liście rozwijanej Periphery Node Model wybierz opcję ethernet\_station.
- 5. W liście rozwijanej Link Model wybierz opcję 10BaseT
- 6. Ustaw liczbę stacji **Number** na **16** i kliknij przycisk **OK** aby stworzyć model sieci LAN.

| 🔀 Rapid Configuration: Star                      |   |
|--------------------------------------------------|---|
| MODELS                                           |   |
| Center Node Model ethernet16_hub                 |   |
| Periphery Node Model ethernet_station  Number 16 |   |
| Link Model 10BaseT                               |   |
| PLACEMENT                                        |   |
| Center                                           |   |
| X 50 Y 50,0001 Radius 24,898                     | Ĩ |
| Select Models Cancel DK                          | ] |

Rysunek 4: Okno podstawowych informacji dla topologii gwiazdy

7. Kliknij prawym przyciskiem myszy na koncentratorze i w otwartym menu kontekstowym wybierz pozycję **Set Name**. W okienku **Name** wpisz **koncentrator** i kliknij przycisk **OK**.

#### 2.1.3 Ustawienie ruchu w stacjach sieciowych

1. Na schemacie sieci kliknij prawym przyciskiem myszy na stacji i w otwartym menu kontekstowym wybierz pozycję **Select Similar Nodes**, w celu zaznaczenia wszystkich stacji roboczych na schemacie.



Rysunek 5: Utworzona w punkcie 1.2 sieć komputerowa

- 2. Kliknij prawym przyciskiem myszy na jednej ze stacji i w otwartym menu kontekstowym wybierz pozycję **Edit Attributes**.
- 3. Zaznacz opcję **Apply Changes to Selected Objects** w celu zastosowania zmian do wszystkich wybranych obiektów (w tym przypadku stacji roboczych).
- 4. W drzewku opcji rozwiń węzeł Traffic Generation Parameters, a następnie postąp podobnie z węzłem Packet Generation Arguments.
- 5. W opcjach ON State Time i OFF State Time ustaw odpowiednio wartości constant(1000) oraz constant(0). Zapewni to, ciągłe nadawanie stacji.
- 6. W opcjach Interarrival Time (seconds) oraz Packet Size (bytes) ustaw wartości exponential(0.005) oraz constant(200) odpowiednio. Zapewni to, że każda stacja będzie generowała średnio jeden 200-tu bitowy pakiet na 1 milisekundę.

Wykorzystując wprowadzone parametry pozwalają na obliczenie średniego ruchu w sieci, generowanego przez pojedynczą stację:

$$SWR = WP \times PN \tag{1}$$

gdzie:

SWR - średnia wielkość ruchu [bity na sekundę] WP - wielkość pakietu [bity] PN - prędkość nadawania [pakiety na sekundę]

#### 2.2 Konfigurowanie symulacji

1. Otwórz Simulation  $\rightarrow$  Choose Individual Statistics...

| * (node_8) Attributes                          |                           |  |  |
|------------------------------------------------|---------------------------|--|--|
| Type: station                                  |                           |  |  |
| Attribute                                      | Value                     |  |  |
| 🕐 _ name                                       | node_8                    |  |  |
| (?) - model                                    | ethernet_station          |  |  |
| Traffic Generation Parameters                  | ()                        |  |  |
| ⑦ - Start Time (seconds)                       | constant (5.0)            |  |  |
| ⑦ – ON State Time (seconds)                    | constant (1000.0)         |  |  |
| ⑦                                              | constant (0.0)            |  |  |
| Packet Generation Arguments                    | ()                        |  |  |
| Interarrival Time (seconds)                    | exponential (0.005)       |  |  |
| Packet Size (bytes)                            | constant (200)            |  |  |
| ② L Segmentation Size (bytes)                  | No Segmentation           |  |  |
| ③ L Stop Time (seconds)                        | Never                     |  |  |
|                                                | <b>•</b>                  |  |  |
| Apply Changes to Selected Objects     Advanced |                           |  |  |
| <u><u>F</u>ind Next</u>                        | <u>C</u> ancel <u>D</u> K |  |  |

Rysunek 6: Okno modyfikacji parametrów stacji sieciowych

- 2. W drzewku opcji rozwiń węzeł Global Statistics, a następnie węzeł Eternet i zaznacz opcję Delay (sec).
- 3. Rozwiń węzeł Traffic Sink i zaznacz opcje Traffic Received (bits/sec).
- 4. Rozwiń węzeł Traffic Source i zaznacz opcje Traffic Sent (bits/sec)
- 5. Rozwiń węzeł Node Statistics, a nastęnie Ethernet i zaznacz opcje Collision Count, Load (bits/sec), Traffic Forwarded (bits/sec), Traffic Received (bits/sec), oraz Utilization.
- 6. Kliknij przycisk **OK**.
- 7. Otworz Simulation  $\rightarrow$  Configure Discrete Event Simulation...
- 8. W zakładce Common zmień opcje Duration na 40 i jednostkę na second(s)
- 9. Kliknij przycisk **OK**.

#### 2.3 Powielanie scenariusza

Ponieważ w tym ćwiczeniu będziemy wykonywać dwie symulacje sieci o tej samej topologii (jedną opisaną powyżej oraz drugą o zwiększonym natężeniu ruchu), możemy uniknąć ponownego wykonywania wszystkich wcześniejszych kroków powielając stworzony wcześniej scenariusz (oraz zmieniając kilka ustawień).

W tym celu należy:

 Otwórz Scenarios → Duplicate Scenario... i zmień nazwę nowego scenariusza na duże obciążenie.



Rysunek 7: Okno wyboru statystyk zbieranych w trakcie działania symulacji

| ★Configure Simulation: Siec_wspoldzielona-Male_obciazenie |                                                                                                        |             |            |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|------------|--|
| Common Global Attrit                                      | Common Global Attributes Object Attributes Reports SLAs Animation Profiling Advanced Environment Files |             |            |  |
| Duration:                                                 | 30                                                                                                     | second(s)   |            |  |
| Seed:                                                     | 128                                                                                                    |             |            |  |
| Values per statistic:                                     | 100                                                                                                    |             |            |  |
| Update interval:                                          | 100000                                                                                                 | Events      |            |  |
|                                                           |                                                                                                        |             |            |  |
| Enable simulation                                         | Excelle simulation log                                                                                 |             |            |  |
|                                                           |                                                                                                        |             |            |  |
|                                                           |                                                                                                        |             |            |  |
|                                                           |                                                                                                        |             |            |  |
|                                                           |                                                                                                        |             |            |  |
|                                                           |                                                                                                        |             |            |  |
| <u>R</u> un                                               |                                                                                                        | Help Cancel | <u>o</u> k |  |

Rysunek 8: Okno modyfikacji parametrów symulacji

- 2. Kliknij przycisk **OK**.
- 3. Na schemacie sieci kliknij prawym przyciskiem myszy na stacji i w otwartym menu kontekstowym wybierz pozycję **Select Similar Nodes**.

- 4. Kliknij prawym przyciskiem myszy na jednej ze stacji i w otwartym menu kontekstowym wybierz pozycję **Edit Attributes**.
- 5. Zaznacz opcję Apply Changes to Selected Objects.
- 6. W drzewku opcji rozwiń węzeł Traffic Generation Parameters, a następnie postąp podobnie z węzłem Packet Generation Arguments.
- 7. W opcjach Interarrival Time (seconds) oraz Packet Size (bytes) ustaw wartości exponential(0.001) oraz constant(200) odpowiednio.

#### 2.4 Uruchomienie symulacji

- 1. Otwórz Scenarios  $\rightarrow$  Manage Scenarios....
- 2. W kolumnie **Results** dla obu scenariuszy zaznacz opcje **collect** lub **recollect**.
- 3. Kliknij przycisk **OK** aby uruchomić obie symulacje (będą wykonywane kolejno).

| <b>₩</b> M | Hanage Scenarios                       |       |                     |                 |               |   |
|------------|----------------------------------------|-------|---------------------|-----------------|---------------|---|
| Pro        | ect Name: Siec_wspoldzielona           |       |                     |                 |               |   |
| #          | Scenario Name                          | Saved | Results             | Sim<br>Duration | Time<br>Units |   |
| 1          | Male_obciazenie                        | saved | <collect></collect> | 30              | second(s)     |   |
| 2          | Duze_obciazenie                        | saved | <collect></collect> | 30              | second(s)     |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               |   |
|            |                                        |       |                     |                 |               | - |
|            | Delete Discord Results Collect Results |       |                     | Cancel          | OK            |   |
|            | Discard Tearing Foliact Learning       |       |                     |                 |               |   |

Rysunek 9: Okno zarządzania scenariuszami

4. Kiedy zakończy się wykonywanie obu symulacji kliknij przycisk Close.

#### 2.5 Analiza wyników

- 1. Otwórz Scenarios  $\rightarrow$  Switch to Scenario...
- 2. Wybierz scenariusz Małe obciążenie
- 3. Otwórz Results  $\rightarrow$  View Results...
- 4. W drzewku opcji rozwiń węzeł Global Statistics, a następnie Traffic Source.
- 5. Zaznacz opcje Traffic Sent (bits/sec).
- 6. Rozwiń węzeł Traffic Sink

| ₭ Simulation Sequence: Siec_wspol                                                                                         | ldzielona 🗙                                              |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Simulation runs to go: 2<br>Running: Male_obciazenie                                                                      | Elapsed Time: — Estimated Remaining Time: —<br>12s. 33s. |  |  |  |
|                                                                                                                           | 11 / 30 sim seconds                                      |  |  |  |
| Simulation Speed Messages Memory U                                                                                        | Isage Memory Stats Profiling                             |  |  |  |
| Current Simulation Speed (events/second) Average Simulation Speed (events/second)                                         |                                                          |  |  |  |
| 200 000                                                                                                                   |                                                          |  |  |  |
| 100 000                                                                                                                   |                                                          |  |  |  |
|                                                                                                                           | 10 15                                                    |  |  |  |
| 0 5                                                                                                                       | Simulated Time (seconds)                                 |  |  |  |
| Simulated Time:         11s. Events:         3100000           Speed:         Average:         259696         events/sec. |                                                          |  |  |  |
| Save output when stopping simulation                                                                                      |                                                          |  |  |  |
| Pause <u>R</u> esume <u>S</u> top                                                                                         | Run Stop Sequence Gose                                   |  |  |  |

Rysunek 10: Okno przebiegu symulacji

- 7. Zaznacz opcje Traffic Received (bits/sec)
- 8. Na pokazanych wykresach można zauważyć, że przy małym obciążeniu kształt wykresu przedstawiającego libczę bitów otrzymanych jest praktycznie taki sam jak wykresu liczby bitów wysłanych.
- 9. Odznacz opcje Traffic Sent (bits/sec) i Traffic Received (bits/sec) w celu wyłączenia podglądu.
- 10. Kliknij przycisk Close.

Wykonaj ponownie powyższe kroki dla drugiego scenariusza **Duże obciążenie**. Jak można zauważyć, w drugim przypadku liczba bitów otrzymanych jest znacząco mniejsza od liczby bitów wysłanych.

Program OPNET IT Guru pozwala również porównać ze sobą wyniki uzyskane w różnych scenariuszach. W tym celu wykonaj następujące kroki:

- 1. Otwórz Results  $\rightarrow$  Compare Results...
- 2. W wyświetlonym drzewku rozwiń węzły **Object Statistics**, **Office Network** oraz **node\_0**, a następnie zaznacz opcję **Load (bits/sec)**. Spowoduje to wyświetlenie się wykresów przedstawiających liczbę wysłanych bitów w danej sekundzie symulacji, dla obu analizowanych secenariuszy.



Rysunek 11: Wykresy przedstawiające liczbę bitów wysłanych oraz liczbę bitów odebranych przez stacje dla scenariusza **Male\_obciazenie** 

- 3. Kliknij przycisk Show aby wyświetlić bardziej szczegółowy wykres.
- 4. Kliknij przycisk zamknięcia okna, a następnie przycisk Delete.
- 5. Kliknij ponownie opcję Load (bits/sec), w celu wyłączenia aktywnego wykresu.
- 6. Rozwiń węzeł koncentrator i zaznacz opcję Collision Count. Spowoduje to wyświetlenie wykresu przedstawiającego liczbę kolizji pakietów w koncentratorze. W celu wyświetlenia się bardziej szczegółowego wykresu, kliknij przycisk Show.
- Podobnie jak w poprzednich punktach wyświetl kolejno dwie pozostałe statystyki przedstawiające wykorzystanie koncetratora (Utilization) oraz opóźnienia (Delay (sec) – ta statysyka znajduje się w węźle Global Statistics → Ethernet)



Rysunek 12: Wykresy przedstawiające liczbę bitów wysłanych oraz liczbę bitów odebranych przez stacje dla scenariusza **Duze\_obciazenie** 



Rysunek 13: Wykres przedstawiający obciążenie stacji dla obu analizowanych scenariuszy



Rysunek 14: Wykres przedstawiający liczbę kolizji w koncentatorze dla obu analizowanych scenariuszy



Rysunek 15: Wykres stopnia wykorzystania koncentratora w obu analizowanych scenariuszach



Rysunek 16: Wykres opóźnienia z jakim pakiety docierają do stacji odbiorczej w obu analizowanych scenariuszach

## 3 Zadania do samodzielnego wykonania

- 1. Wyjaśnij wyniki uzyskane podczas ćwiczeń.
- 2. Przeprowadź symulacje i zarejestruj wyniki dla jednego punktu pomiarowego (określonej liczby stacji rozmiaru pakietu):
  - 1-200016-10002-200024-10003-200032-1000
  - 8-2000 64-1000

Porównaj wyniki dla różnych okresów pomiędzy wysłaniem kolejnych pakietów (**Interarrival time**) np.: 0.01, 0.005, 0.001. Czas symulacji (**Duration**) ustaw na 20 sekund.

UWAGA! W celu wykonania tego ćwiczenia w kreatorze projektu dla opcji Select Technologies należy dodatkowo wybrać opcję ethernet\_advanced, a w trakcie tworzenia sieci dla parametru Center Node Model ustawić wartość ethernet64\_hub\_adv.

Uzyskane wyniki oraz wyciągnięte na ich podstawie wnioski opisz w sprawozdaniu.